Нейросетевые технологии в финансово-экономической деятельности
В настоящее время имеет место широкое появление на отечественном рынке компьютеров и программного обеспечения нейропакетов и нейрокомпьютеров, предназначенных для решения финансовых задач. Те банки и крупные финансовые организации, которые уже используют нейронные сети для решения своих задач, понимают, насколько эффективным средством могут быть нейронные сети для задач с хорошей статистической базой, например при наличии достаточно длинных временных рядов, в том числе и многомерных.
Нейросетевые технологии оперируют биологическими терминами, а методы обработки данных получили название генетических алгоритмов, реализованных в ряде версий нейропакетов, известных в России. Это профессиональные нейропакеты Brain Maker Professional v.3.11 и Neuroforester v.5.1, в которых генетический алгоритм управляет процессом общения на некотором множестве примеров, а также стабильно распознает и прогнозирует новые ситуации с высокой степенью точности даже при появлении противоречивых или неполных знаний. Причем обучение сводится к работе алгоритма подбора весовых коэффициентов, который реализуется автоматически без участия пользователя-аналитика. Все результаты обработки представляются в графическом виде, удобном для анализа и принятия решений.
Использование нейросетевых технологий как инструментальных средств перспективно в решении множества плохо формализуемых задач, в частности при анализе финансовой и банковской деятельности, биржевых, фондовых и валютных рынков, связанных с высокими рисками моделей поведения клиентов, и др. Точность прогноза, устойчиво достигаемая нейросетевыми технологиями при решении реальных задач, уже превысила 95%. На мировом рынке нейросетевые технологии представлены широко – от дорогих систем на суперкомпьютерах до ПК, делая их доступными для приложений практически любого уровня.
К основным преимуществам нейронных сетей можно отнести:
способность обучаться на множестве примеров в тех случаях, когда неизвестны закономерности развития ситуации и функции зависимости между входными и выходными данными. В таких случаях (к ним можно отнести до 80% задач финансового анализа) пасуют традиционные математические методы;
способность успешно решать задачи, опираясь на неполную, искаженную и внутренне противоречивую входную информацию;
эксплуатация обученной нейронной сети по силам любым пользователям;
нейросетевые пакеты позволяют исключительно легко подключаться к базам данных, электронной почте и автоматизировать процесс ввода и первичной обработки данных;
внутренний параллелизм, присущий нейронным сетям, позволяет практически безгранично наращивать мощность нейросистемы, т.е. сверхвысокое быстродействие за счет использования массового параллелизма обработки информации;
толерантность к ошибкам: работоспособность сохраняется при повреждении значительного числа нейронов;
способность к обучению: программирование вычислительной системы заменяется обучением;
способность к распознаванию образов в условиях сильных помех и искажений.
Появление столь мощных и эффективных средств не отменит традиционные математические и эконометрические методы технического анализа, или сделает ненужной работу высококлассных экспертов. В качестве нового эффективного средства для решения самых различных задач нейронные сети просто приходят – и используются теми людьми, которые их понимают, которые в них нуждаются и которым они помогают решать многие профессиональные проблемы. Не обязательно насаждать нейронные сети или пытаться доказать их неэффективность путем выделения присущих им особенностей и недостатков - нужно просто относиться к ним, как к неизбежному следствию развития вычислительной математики, информационных технологий и современной элементной базы.
Под нейрокомпьютером здесь понимается любое вычислительное устройство, реализующее работу нейронных сетей, будь то специальный нейровычислитель или эмулятор нейронных сетей на персональном компьютере.
Нейронная сетью (НС) – вид вычислительной структуры, основанной на использовании нейроматематики - нового направления математики, находящегося на стыке теории управления, численных методов и задач классификации, распознавания образов. Для решения конкретных задач используются пакеты прикладных программ-эмуляторов работы нейронных сетей – нейропакеты, нейросетевые и гибридные экспертные системы, специализированные параллельные вычислители на базе нейрочипов.
Модели НС могут быть программного и аппаратного исполнения.
Несмотря на существенные различия, отдельные типы НС обладают несколькими общими чертами.
Во-первых, основу каждой НС составляют относительно простые, в большинстве случаев – однотипные, элементы (ячейки), имитирующие работу нейронов мозга. Далее под нейроном будет подразумеваться искусственный нейрон, то есть ячейка НС. Каждый нейрон характеризуется своим текущим состоянием по аналогии с нервными клетками головного мозга, которые могут быть возбуждены или заторможены. Он обладает группой синапсов – однонаправленных входных связей, соединенных с выходами других нейронов, а также имеет аксон – выходную связь данного нейрона, с которой сигнал (возбуждения или торможения) поступает на синапсы следующих нейронов. Общий вид нейрона приведен на рисунке.
|
Каждый синапс характеризуется величиной синаптическои связи или ее весом wi, который по физическому смыслу эквивалентен электрической проводимости.
Текущее состояние нейрона определяется, как взвешенная сумма его входов.
В зависимости от функций, выполняемых нейронами в сети, можно выделить 3 типа:
· входные нейроны, на которые подается вектор, кодирующий входное воздействие или образ внешней среды; в них обычно не осуществляется вычислительных процедур, а информация передается с входа на выход путем изменения их активации;
· выходные нейроны, выходные значения которых представляют выходы нейросети;
· промежуточные нейроны, составляющие основу нейронных сетей.
В большинстве нейронных моделей тип нейрона связан с его расположением в сети. Если нейрон имеет только выходные связи, то это входной нейрон, если наоборот – выходной нейрон. В процессе функционирования сети осуществляется преобразование входного вектора в выходной, переработка информации.
Каждый нейрон распознаёт и посылает сигнал об одном простом событии, он не посылает много сигналов и не распознаёт много событий. Синапс позволяет единственному сигналу иметь различные воздействия на связанные с ним нейроны. Распознавание более сложных событий есть работа группы взаимосвязанных нейронов (НС) и несколько биологических нейронных сетей функционируют взаимосвязанно для обработки всё более сложной информации.
Нейронная сеть состоит из слоев нейронов, которые соединены друг с другом. Детали того, как нейроны соединены между собой, заставляют задуматься над вопросом проектирования НС. Некоторые нейроны будут использоваться для связи с внешним миром, другие нейроны - только с нейронами. Они называются скрытыми нейронами.
Перечислим основные классы задач, возникающих в финансовой области, которые эффективно решаются с помощью нейронных сетей:
· прогнозирование временных рядов на основе нейросетевых методов обработки (прогнозирование кросс-курса валют, прогнозирование котировок и спроса акций, прогнозирование остатков средств на корреспондентских счетах банка);
· страховая деятельность банков;
· прогнозирование банкротств на основе нейросетевой системы распознавания;
· определение курсов облигаций и акций предприятий с целью инвестирования;
· применение нейронных сетей к задачам биржевой деятельности;
· прогнозирование экономической эффективности финансирования инновационных проектов;
· предсказание результатов займов;
· оценка платежеспособности клиентов;
· оценка недвижимости;
· рейтингование;
· общие приложения нейронных сетей и пр.
Дата добавления: 2017-01-29; просмотров: 936;
