Организация вывода информации
Видеомонитор (или монитор) – устройство отображения текстовой и графической информации на экране.
Формирование изображения на мониторе
Экран ЭЛТ
Контроллер ЭЛТ выполняет функцию связующего звена между видеопамятью и монитором: он принимает поток битов из памяти и преобразует его в свечение соответствующих точек экрана. Эти светящиеся точки (пиксели (pixel – picture element)) производятся в результате соударения электронного луча с внутренней поверхностью экрана ЭЛТ, на которую нанесён фосфоресцирующий состав. Электронный луч, управляемый системой отклонения, пробегает по экрану строка за строкой слева направо и сверху вниз (развёртка), при этом контроллер включает и выключает интенсивность луча, повторяя “узор” битов в памяти. За одну секунду электронный луч побегает по экрану N раз; при обычном N>60 глазу человека изображение представляется ясным и устойчивым. Между кадрами луч должен из правого нижнего угла экрана вернуться в левый верхний. Это движение называется обратным ходом кадра. Во время обратного хода (обычно его время составляет 1,25 мс) интенсивность луча выключена и на экран ничего не выводится.
Жидкокристаллический дисплей (LCD – Liquid Crystal Display)
Жидкий кристалл - это вязкая жидкость, которая, в отличие от обычной (например, воды), пропускает свет не одинаково во всех направлениях, а по-разному, в зависимости от пространственной ориентации большинства ее молекул. Такая неравномерность оптических характеристик свойственна кристаллам - отсюда и название вещества. Получается, что если повернуть молекулы жидкого кристалла определенным образом, то можно заставить его пропускать лишь нужную часть светового потока. Это на самом деле так, правда, дополнительно приходится применять еще и систему поляризационных фильтров. Для вращения молекул используется электрическое поле. При смене его характеристик частицы перестраиваются по-новому, что требует некоторого времени (жидкий кристалл - вещество вязкое). Поэтому изображение на экране ЖК-дисплея инерционное и теряет четкость при резких изменениях.
Для создания точечного дисплея изготовляют матрицу из миниатюрных прозрачных ячеек, заполненных жидким кристаллом. Она помещается между двумя электродами, один из которых - цельная пластина, а другой состоит из множества миниатюрных контактов, соответствующих отдельным ячейкам. В современных мониторах подача электрического сигнала на индивидуальные электроды происходит через так называемые тонкопленочные транзисторы (TFT). Это позволило увеличить время, на протяжении которого яркость точки сохраняется, и, как следствие, избавиться от мерцания изображения.
LCD-мониторы (Liquid Crystal Display, жидкокристаллические мониторы) сделаны из вещества, которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Молекулы жидких кристаллов под воздействием электричества могут изменять свою ориентацию и вследствие этого изменять свойства светового луча проходящего сквозь них. И поэтому стало возможным обнаружить связь между повышением электрического напряжения и изменением ориентации молекул кристаллов для обеспечения создания изображения. Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в кварцевых часах, а затем их стали использовать в мониторах для портативных компьютеров. Сегодня, в результате прогресса в этой области, начинают получать все большее распространение LCD-мониторы для настольных компьютеров.
Экран LCD-монитора представляет собой массив маленьких сегментов (называемых пикселями), которые могут манипулироваться для отображения информации. LCD-монитор имеет несколько слоев, где ключевую роль играют две панели сделанные из свободного от натрия и очень чистого стеклянного материала, называемого субстрат или подложка, которые собственно и содержат тонкий слой жидких кристаллов между собой. Две панели расположены очень близко друг к другу. Жидкокристаллическая панель освещается источником света (в зависимости от того, где он расположен, жидкокристаллические панели работают на отражение или на прохождение света). Плоскость поляризации светового луча поворачивается на 90° при прохождении одной панели. При появлении электрического поля молекулы жидких кристаллов частично выстраиваются вдоль поля, и угол поворота плоскости поляризации света становится отличным от 90 градусов.
Если расположить большое число электродов, которые создают разные электрические поля в отдельных местах экрана (ячейки), то появится возможность, при правильном управлении потенциалами этих электродов, отображать на экране буквы и другие элементы изображения. Электроды помещаются в прозрачный пластик и могут иметь любую форму. Технологические новшества позволили ограничить их размеры величиной маленькой точки, соответственно, на одной и той же площади экрана можно расположить большее число электродов, что увеличивает разрешение LCD-монитора.
Для вывода цветного изображения необходима подсветка монитора сзади, так, чтобы свет порождался в задней части LCD-дисплея. Это необходимо для того, чтобы можно было наблюдать изображение хорошего качества, даже если окружающая среда не является светлой. Цвет получается в результате использования трех фильтров, которые выделяют из излучения источника белого света три основные компоненты. Комбинация трех основных цветов для каждой точки или пикселя экрана дает возможность воспроизвести любой цвет.
В настоящее время нет никаких стандартов для определения того, достаточной ли яркостью обладает LCD-монитор. При этом в центре яркость LCD-монитора может быть на 25% выше, чем у краев экрана.
Контрастность LCD-монитора определяется отношением яркостей между самым ярким белым и самым темным черным цветом. Хорошим контрастным соотношением считается 120:1, что обеспечивает воспроизведение живых насыщенных цветов. Контрастное соотношение 300:1 и выше используется тогда, когда требуется точное отображение черно-белых полутонов.
Преимуществам LCD-мониторов:
· создаваемое на их экранах изображение отличается четкостью и насыщенностью цветов
· отсутствие искажений на экране
· потребляемая и рассеиваемая мощность у LCD-мониторов существенно ниже, чем у мониторов на основе ЭЛТ.
Плазменный дисплей
Формирование изображения в плазменном дисплее происходит в пространстве шириной примерно 0,1 мм между двумя стеклянными пластинами, заполненном смесью благородных газов - ксенона и неона. На переднюю, прозрачную пластину нанесены тончайшие прозрачные проводники, или электроды, а на заднюю - ответные проводники.
В современных цветных дисплеях переменного тока задняя стенка имеет микроскопические ячейки, заполненные люминофорами трех основных цветов - красного, синего и зеленого, по три ячейки на каждый пиксель. Так как оба электрода в дисплеях переменного тока закрыты слоем диэлектрика, прямого разряда, как в моделях постоянного тока, не получается. Вместо этого каждый элемент (электрод-электрод) работает как очень емкий конденсатор.
Этот принцип существенно продлевает срок жизни дисплея, оставляя в сохранности электроды и увеличивая цветность и яркость. Однако, в этом случае резко повышается цена устройства из-за усложняющейся управляющей электроники - для дисплеев переменного тока требуется более высокая частота. При разряде смесь газов излучает ультрафиолетовый свет, который в свою очередь воздействует на люминофор, заставляя его светиться в видимом спектре. Интенсивности излучения вполне хватает, чтобы плазменные дисплеи могли использоваться в помещениях с любым уровнем освещенности.
Практически каждый производитель плазменных панелей добавляет к классической технологии собственные ноу-хау, улучшающие цветопередачу, контрастность и управляемость.
Дата добавления: 2016-12-16; просмотров: 685;