Отношение несовместимости. Несовместимыми являются суждения А и Е, А и О, Е и I, которые одновременно не могут быть истинными

Несовместимыми являются суждения А и Е, А и О, Е и I, которые одновременно не могут быть истинными. Различают два вида несовместимости: противоположность и противоречие.

Противоположными (контрарными) являются суждения Л и Е, которые одновременно не могут быть истинными, но могут быть одновременно ложными.

Истинность одного из противоположных суждений определяет ложность другого: А® ù Е; Е®ùА. Например, истинность суждения «Все офицеры — военнослужащие» определяет ложность суждения «Ни один офицер не является военнослужащим». При ложности же одного из противоположных суждений другое остается неопреде­ленным — оно может быть как истинным, так и ложным: ù А®(Е v ù Е); ùЕ®(А v ù А). Так, например, при ложности сужде­ния «Все птицы улетают зимой в теплые края» ему противополож­ное «Ни одна птица не улетает зимой в теплые края» тоже оказыва­ется ложным. В другом случае при ложности суждения «Ни один судья не является юристом» ему противоположное «Все судьи — юристы» будет истинным.

2. Противоречащими (контрадикторными) являются сужде­ния А и О, Е и I, которые одновременно не могут быть ни истин­ными, ни ложными.

Для противоречия характерна строгая, или альтернативная не­совместимость: при истинности одного из суждений другое всегда будет ложным; при ложности первого второе будет истинным. Отно­шения между такими суждениями регулируются законом исключен­ного третьего.

Если А признается истинным, то О будет ложным (А®ù О); при истинности Е будет ложным I (Е® ù I). И наоборот: при ложности А будет истинным О (ù А®Ю); а при ложности Е будет истинным I (ùЕ® I ).

Например, если признается истинным суждение «Все принципи­альные люди признают свои ошибки», то ложным будет ему альтер­нативное: «Некоторые принципиальные люди не признают своих ошибок».

Следует отметить, что несовместимые единичные суждения могут находиться лишь в отношении противоречия и не могут находиться в отношении противоположности, ибо каждому от­дельному предмету может быть либо присущ, либо не присущ оп­ределенный признак. Например, суждения «Суд вынес обвинитель­ный приговор по делу Л.» и «Суд не вынес обвинительного при­говора по делу Л.» находятся в отношении противоречия: если первое суждение истинно, то признается ложность второго, и на­оборот.

Сложные суждения

Сложные суждения также могут быть сравнимымии несравни­мыми.

Несравнимыеэто суждения, которые не имеют общих пропо­зициональных переменных. Например, р Ù q и m Ù n.

Сравнимыеэто суждения, которые имеют одинаковые пропо­зиционные переменные (составляющие) и различаются логически­ми связками, включая отрицание. Например, сравнимыми являются следующие два суждения: «Норвегия или Швеция имеют выход в Балтийское море» (р v q); «Ни Норвегия, ни Швеция не имеют вы­хода в Балтийское море» (ùр Ù ùq). Хотя эти суждения различны по логической форме (первое из них — дизъюнктивное суждение, а второе — конъюнкция отрицаний, вместе с тем они сравнимы, по­скольку включают одинаковые составляющие (р и q). Сравнимы также следующие пары суждений: 1) р®q и ùp v q; 2) ù r Ù s и ù (r Ù s); 3) ù m Ùù n и ù (m Ù n). Наличие в каждой паре общих пере­менных позволяет сопоставлять их по смыслу и устанавливать истин­ность отношения.

Сложные сравнимые суждения могут быть совместимыми и не­совместимыми.

Отношение совместимости.

К совместимым относятся такие сравнимые суждения, кото­рые одновременно могут быть истинными. Как и в случае простых суждений, различают три вида совместимости сложных суждений: эквивалентность, частичная совместимость и подчинение.

1. Эквивалентные — это суждения, которые принимают одни и те значения, т.е. одновременно являются либо истинными, либо ложными.

На таблице (рис. 38) показано эквивалентное отношение между сложными суждениями: А и В — схемы суждений; знак(º)— отно­шение эквивалентности.

 

 


1-я и 4-я строки таблицы показывают, что А и В одновременно принимают одинаковые значения — И и Л; зачеркнутые 2-я и 3-я строки показывают, что эквивалентные суждения одновременно не могут принимать различные значения.

Отношение эквивалентности позволяет выражать одни сложные суждения через другие — конъюнкцию через дизъюнкцию или имп­ликацию, и наоборот. Приведем четыре известные эквивалентности, которые являются законами логики.

1) Выражение конъюнкции через дизъюнкцию:

ù(АÙВ)º ùА v ù В

2) Выражение дизъюнкции через конъюнкцию: "1 (A ù(АÚВ)º ùА Ù ù В

Эти две эквивалентности называются законами де Моргана.

3) Выражение импликации через конъюнкцию:

ù(А®В)º ùА Ù ù В

4) Выражение импликации через дизъюнкцию: А®Вºù A v B

2. Частичная совместимость характерна для суждений, кото­рые могут быть одновременно истинными, но не могут быть одно­временно ложными.

Отношение частичной совместимости для сложных суждений по­казано на таблице (рис. 39), где А и В — схемы сложных суждений; (v) — знак частичной совместимости. 1-я строка таблицы говорит об одновременной истинности А и В; 2-я и 3-я — несовпадение значе­ний; 4-я строка зачеркнута, поскольку исключается одновременная ложность А и В.

3. Подчинение между суждениями имеет место в том случае, когда при истинности подчиняющего подчиненное всегда будет истинным.

На таблице (рис. 40) показано отношение подчинения между сложными суждениями: А и В — схемы суждений; (®) — знак подчинения. 1-я строка показывает, что в случае истинности А ис­тинным является и В. В 3-й и 4-й строках А является ложным, а В принимает произвольные значения. 2-я строка в таблице зачеркнута, поскольку отношение подчинения исключает ложность подчинен­ного В при истинности подчиняющего А.

Отношение логического подчинения, позволяющее по истиннос­ти подчиняющего суждения определить истинность подчиненного,

составляет основу фундаментального в науке логики понятия логи­ческого следования, регулирующего все виды рассуждений.








Дата добавления: 2016-09-20; просмотров: 624;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.