Твердотельные и газоразрядные лазеры. Их применение.
Одна из особенностей газов состоит в многообразии различных физических процессов, приводящих к образованию инверсии населенностей. Такими процессами являются неупругие соударения атомов разного "сорта", диссоциации молекул при соударении их в электрическом разряде, возбуждение атомов электронным ударом, светом и т.д.Чаще всего инверсия населенностей создается в процессе электрического разряда. Эти лазеры называются газоразрядными. В них инверсия населенностей уровней создается за счет возбуждения атомов или молекул газа при их соударении со свободными быстрыми электронами, образующимися в электрическом разряде.Давление в газоразрядных лазерах выбирается в пределах от сотых долей до нескольких мм рт.ст. При меньших давлениях электроны, ускоренные электрическим полем, очень редко сталкиваются с атомами. При этом ионизация и возбуждение атомов происходят недостаточно интенсивно.При больших давлениях эти столкновения становятся, наоборот, слишком частыми. Из-за этого электроны не успевают достаточно ускориться в электрическом поле и приобрести энергию, необходимую для ионизации и возбуждения атомов, т.е. столкновения становятся мало эффективными. Различают три типа газоразрядных лазеров: лазеры на нейтральных атомах, ионные лазеры и молекулярные лазеры. Они отличаются друг от друга как механизмом образования инверсии населенностей, так и диапазонами генерируемых волн λ. Различие в диапазонах обусловлено различиями в энергетическом спектре нейтральных атомов, ионов и молекул. Наряду с достоинствами газ как рабочая среда для лазера обладает и недостатком: плотность газа значительно ниже плотности твердых тел, и поэтому в единице объема газа нельзя получить такое большое количество возбужденных атомов, излучающих свет, как в твердом теле. В результате этого даже большие размеры газовых лазеров пока не дают возможности получить те высокие импульсные мощности, которые дают лазеры на твердом теле. Твердотельный лазер — лазер, в котором в качестве активной среды используется вещество, находящееся в твёрдом сотоянии (в отличие от газов в газовых лазерах и жидкостей в лазерах на красителях). Существует большое количество твердотельных лазеров, как импульсных, так и непрерывных. Наибольшее распространение среди импульсных получили лазер на рубине и неодимовом стекле (стекле с примесью Nd). Неодимовый лазер работает на длине волны l = 1,06 мкм. Лазер на рубине, наряду с лазером на неодимовом стекле, являются наиболее мощными импульсными лазерами. Полная энергия импульса генерации достигает сотен дж при длительности импульса 10-3 сек. Оказалось также возможным реализовать режим генерации импульсов с большой частотой повторения (до нескольких кгц). Примером твердотельных лазеров непрерывного действия являются лазеры на флюорите кальция CaF2 с примесью диспрозия Dy и Л. на иттриево-алюминиевом гранате Y3Al5O12 с примесями различных редкоземельных атомов. Большинство таких лазеров работает в области длин волн l от 1 до 3 мкм. Если не принимать специальных мер, то спектр генерации твердотельных Л. сравнительно широк, т.к. обычно реализуется многомодовой режим генерации. Твердотельные лазеры на люминесцирующих твёрдых средах (диэлектрические кристаллы и стёкла). В качестве активаторов обычно используются ионы редкоземельных элементов или ионы группы железа Fe. Накачка оптическая и от полупроводниковых лазеров, осуществляется по трёх- или четырехуровневой схеме. Современные твердотельные лазеры способны работать в импульсном, непрерывным и квазинепрерывном режимах.Применение лазеров для обработки, резания и микросварки твердых материалов оказывается экономически более выгодным (например, пробивание калиброванных отверстий в алмазе лазерным лучом сократило время с 24 ч до 6—8 мин). Лазеры применяются для скоростного и точного обнаружения дефектов в изделиях, для тончайших операций (например, луч CO2-лазера в качестве бескровного хирургического ножа), для исследования механизма химических реакций и влияния на их ход, для получения сверхчистых веществ. Широко применяется лазерное разделение изотопов, например такого важного в энергетическом отношении элемента, как уран. Получение и исследование высокотемпературной плазмы. Эта область их применения связана с развитием нового направления — лазерного управляемого термоядерного синтеза. Лазеры широко применяются в измерительной технике. Лазерные интерферометры (в них источником света служит лазер) используются для сверхточных дистанционных измерений линейных перемещений, коэффициентов преломления среды, давления, температуры.. Сила лазера «прощупала» поверхность Луны и помогла советским ученым скорректировать ее карту. Интересное применение лазеры нашли в голографии (см. § 184). Для создания систем голографической памяти с высокой степенью считывания и большой емкостью необходимы газовые лазеры видимого диапазона еще более высокой монохроматичности и направленности излучения. Применения лазеров в настоящее время столь обширны, что даже их перечисление в объеме настоящего курса просто невозможно.
Дата добавления: 2016-06-13; просмотров: 868;