ДИФРАКЦИЯ ФРЕНЕЛЯ НА
КРУГЛЫХ ОТВЕРСТИЯХ
а) CD – экран. Экран с круглым отверстием
AB. Исследуем световое воздействие в точке р, лежащей на линии пересечения источника S с центром отр. Отверстие вырезает часть волновой поверхности.
Разобьем открытую часть волновой поверхности на зоны Френеля. В зависимости от размеров отверстий на ней укладывается то или иное количество зон. Если отверстие пропускает 1, 3 или 5 зон, то световое воздействие в точке р больше, чем при полностью открытом волновом фронте. Максимум светового воздействия в точке р при k=1 (см последний рисунок в прошлом абзаце). Если отверстие открывает небольшое четное число зон Френеля (k=2,4,6), то световое воздействие всегда больше, чем при полностью открытом волновом фронте. Min воздействия отвечает отверстию в 2 зоны Френеля.
б) Дифракция Френеля на … Световая волна встречает на своем пути непрозрачный круглый экран AB (на рисунке ошибка – АВ – там снизу на самом деле).
Исследуем световое воздействие в точке p. Экран перекрывает часть зон Френеля. Разобьем открытую часть световой поверхности на зоны Френеля. Согласно рассуждениям методом зон Френеля: A=(An+1)/2 + [(An+1)/2 – (An+2)/2 + (An+3)/2] + … + - Ak/2. n – число перекрытых зон Френеля. An+1 – амплитуда от 1-ой открытой зоны. A=(An+1)/2. Итак, если число зон, перекрытых экраном AB невелико, точка р останется освещенной, причем интенсивность освещенности не отличается практически от интенсивности освещенности, создаваемой полностью открытым световым фронтом. По мере увеличения размеров экрана АВ амплитуда от 1-ой открытой зоны будет убывать, однако точка р остается освещенной до тех пор, пока число перекрытых зон Френеля достаточно мало и лишь при условии, что экран перекрывает большее число зон Френеля, в точке р будет наблюдаться min, т.е. геометрическая тень от экрана АВ.
Дата добавления: 2016-06-13; просмотров: 518;