Модификационная изменчивость
Модификационная изменчивость не вызывает изменений генотипа, она связана с реакцией данного, одного и того же генотипа на изменение внешней среды: в оптимальных условиях выявляется максимум возможностей, присущих данному генотипу. Так, продуктивность беспородных животных в условиях улучшенного содержания и ухода повышается (надои молока, нагул мяса). В этом случае все особи с одинаковым генотипом отвечают на внешние условия одинаково (Ч. Дарвин этот тип изменчивости назвал определенной изменчивостью). Однако другой признак — жирность молока — слабо подвержен изменениям условий среды, а масть животного — еще более устойчивый признак. Модификационная изменчивость обычно колеблется в определенных пределах. Степень варьирования признака у организма, т. е. пределы модификационной изменчивости, называется нормой реакции.
Широкая норма реакции свойственна таким признакам, как удои молока, размеры листьев, окраска у некоторых бабочек; узкая норма реакции — жирности молока, яйценоскости у кур, интенсивности окраски венчиков у цветков и др.
Фенотип формируется в результате взаимодействий генотипа и факторов среды. Фенотипические признаки не передаются от родителей потомкам, наследуется лишь норма реакции, т. е. характер реагирования на изменение окружающих условий. У гетерозиготных организмов при изменении условий среды можно вызвать различные проявления данного признака.
Свойства модификаций: 1) ненаследуемость; 2) групповой характер изменений; 3) соотнесение изменений действию определенного фактора среды; 4) обусловленность пределов изменччивоти генотипом
Норма реакции — это предел изменчивости определенного признака, в зависимости от окружающих воздействий. Пример: у зайца шире норма реакции на колебания температуры окружающей среды, чем у коров. Корова не может себе позволить безнаказанно гулять зимой и прыгать по сугробам. Зайцы же не плохо себя чувствуют и зимой и летом. А у лошадей узкая норма реакции на изменения состава крови, и малейшее его нарушение может быть фатально для животного. Лошади вынуждены пить исключительно чистую воду и остерегаться даже укуса пчелы. А вот обычные домашние свиньи имеют тот же диапазон значительно шире, вот и способны пить и есть практически что угодно.
Фенокопии — изменения фенотипа под влиянием неблагоприятных факторов среды, по проявлению похожие на мутации. В медицине фенокопии — ненаследственные болезни, сходные с наследственными.одно, без вреда организму.
Генокопии (лат. genocopia) — это сходные фенотипы, сформировавшиеся под влиянием разных неаллельных генов. То есть это одинаковые изменения фенотипа, обусловленные аллелями разных генов, а также имеющие место в результате различных генных взаимодействий или нарушений различных этапов одного биохимического процесса с прекращением синтеза. Проявляется как эффект определенных мутаций, копирующих действие генов или их взаимодействие.
Экспрессия генов - это процесс в ходе, которого информация, содержащаяся в гене, используется для синтеза функционального генетического продукта. Как правило, этим генетическим продуктом являются белки или РНК. Процесс экспрессии генов происходит в организмах всех живых существ: эукариот (в том числе в многоклеточных организмах), прокариот (у бактерий и архей), а также вирусов - для создания макромолекулярных основ для их жизнедеятельности. Некоторые процессы, происходящие при экспрессии генов, могут модулироваться определенными факторами, например транскрипция, сплайсинг РНК, трансляция и посттрансляционная модификация белка.
Экспрессия генов обеспечивает поддержание структуры и функции клетки, что является основой для дифференциации клеток, морфогенеза, а также универсальной адаптации любого организма к условиям существования. Регуляция генов может также служить в качестве субстрата для эволюционных изменений, поскольку контроль над временем, местом и интенсивностью экспрессии генов может иметь огромное влияние на функции (действие) генов в клетке или в многоклеточном организме.
Пенетрантность (от лат. penetro — проникаю, достигаю), количественный показатель фенотипической изменчивости проявления гена. Измеряется (обычно в %) отношением числа особей, у которых данный ген проявился в фенотипе, к общему числу особей, в генотипе которых этот ген присутствует в необходимом для его проявления состоянии (гомозиготном — в случае рецессивных генов или гетерозиготном — в случае доминантных генов). Проявление гена у 100% особей с соответствующим генотипом называется полной П., в остальных случаях — неполной П. Неполная П. свойственна проявлению многих генов человека, животных, растений и микроорганизмов. Например, некоторые наследственные болезни человека развиваются только у части лиц, в генотипе которых присутствует аномальный ген; у остальных же наследственное предрасположение к болезни остаётся нереализованным. Неполная П. гена обусловлена сложностью и многоступенчатостью процессов, протекающих от первичного действия генов на молекулярном уровне до формирования конечных признаков на уровне целостного организма. П. гена может варьировать в широких пределах в зависимости от генотипической среды. Путём селекции можно получать линии особей с заданным уровнем П. Средний уровень П. зависит также от условий среды. См. также Экспрессивность, Феногенетика.
Комбинативная изменчивость - это следствие перекреста гомологичных хромосом, их случайного расхождения в мейозе и случайного сочетания гамет при оплодотворении. Комбинативная изменчивость ведет к появлению бесконечно большого разнообразия генотипов и фенотипов. Она служит неиссякаемым источником наследственного разнообразия видов и основой для естественного отбора.
Громадное генотипическое и, следовательно, фенотипическое разнообразие в природных популяциях является тем исходным эволюционным материалом, с которым оперирует естественный отбор.
26 вопр
Наследственную, или генотипическую, изменчивость подразделяют на комбинативную и мутационную.
Комбинативной называют изменчивость, в основе которой лежит образование рекомбинаций, т. е. таких комбинаций генов, которых не было у родителей.
В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Практически неограниченными источниками генетической изменчивости служат три процесса:
1) Независимое расхождение гомологичных хромосом в первом мейотическом делении. Именно независимое комбинирование хромосом при мейозе является основой третьего закона Менделя. Появление зеленых гладких и желтых морщинистых семян гороха во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами — пример комбинативной изменчивости.
2) Взаимный обмен участками гомологичных хромосом, или кроссинговер. Он создает новые группы сцепления, т. е. служит важным источником генетической рекомбинации аллелей. Рекомбинантные хромосомы, оказавшись в зиготе, способствуют появлению признаков, нетипичных для каждого из родителей.
3) Случайное сочетание гамет при оплодотворении.
Эти источники комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перетасовку» генов, что приводит к появлению организмов с другими генотипом и фенотипом (сами гены при этом не изменяются).
Комбинативная изменчивость является важнейшим источником всего колоссального наследственного разнообразия, характерного для живых организмов. Однако перечисленные источники изменчивости не порождают существенных для выживания стабильных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Такие изменения возникают в результате мутаций.
Мутационная изменчивость. Мутационной называется изменчивость самого генотипа.
Мутагенез — это внесение изменений в нуклеотидную последовательность ДНК (мутаций). Различают естественный (спонтанный) и искусственный (индуцированный) мутагенез.
Естественный, или спонтанный, мутагенез происходит вследствие воздействия на генетический материал живых организмов мутагенных факторов окружающей среды, таких какультрафиолет, радиация, химические мутагены.
Механизм мутагенеза
Последовательность событий приводящая к мутации (внутри хромосомы) выглядит следующим образом:
Происходит повреждение ДНК.
В случае, если повреждение произошло в незначащем (интрон) фрагменте ДНК, то мутации не происходит.
В случае если повреждение произошло в значащем фрагменте (экзон), и произошла корректная репарация ДНК, или вследствие вырожденности генетического кода не произошло нарушения, то мутации не происходит.
Только в случае такого повреждения ДНК, которое произошло в значащей части, которое не было корректно репарированно, которое изменило кодировку аминокислоты, или которое привело к выпадению части ДНК и соединению ДНК вновь в единую цепь — то оно приведет к мутации.
Мутагенез на уровне генома также может быть связан с инверсиями, делециями, транслокациями, полиплоидией, и анеуплоидией, удвоением, утроением (множественной дупликацией) и т. д. некоторых хромосом.
Искусственный мутагенез широко используют для изучения белков и улучшения их свойств (направленной эволюции (англ.)).
Ненаправленный мутагенез
Методом ненаправленного мутагенеза в последовательность ДНК вносятся изменения с определенной вероятностью. Мутагенными факторами (мутагенами) могут быть различные химические и физические воздействия — мутагенные вещества, ультрафиолет, радиация. После получения мутантных организмов производят выявление (скрининг) и отбор тех, которые удовлетворяют цели мутагенеза. Ненаправленный мутагенез более трудоемок и его проведение оправдано, если разработана эффективная система скрининга мутантов.
Направленный мутагенез
В направленном (сайт-специфическом) мутагенезе изменения в ДНК вносятся в заранее известный сайт. Для этого синтезируют короткие одноцепочечные молекулы ДНК (праймеры),комплементарные целевой ДНК за исключением места мутации.
Мутации — это внезапные наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.
Мутации возникают внезапно, скачкообразно, как дискретные изменения признаков.
В отличие от ненаследственных изменений мутации представляют собой качественные изменения, которые передаются из поколения в поколение.
Мутации проявляются по-разному и могут быть как полезными, так и вредными, как доминантными, так и рецессивными.
Мутации ненаправленны (спонтанны), т. е. мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.
Почти любое изменение в структуре или количестве хромосом, при котором клетка сохраняет способность к самовоспроизведению, обусловливает наследственное изменение признаков организма. По характеру изменения генома, т. е. совокупности генов, заключенных в гаплоидном наборе хромосом, различают генные, хромосомные и геномные мутации.
Генные, или точковые, мутации— результат изменения нуклеотидной последовательности в молекуле ДНК в пределах одного гена. Такое изменение в гене воспроизводится при транскрипции в структуре иРНК; оно приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся при трансляции на рибосомах. В результате синтезируется другой белок, что ведет к изменению соответствующего признака организма. Это наиболее распространенный вид мутаций и важнейший источник наследственной изменчивости организмов.
Существуют разные типы генных мутаций, связанных с добавлением, выпадением или перестановкой нуклеотидов в гене. Этодупликации (повторение участка гена), вставки (появление в последовательности лишней пары нуклеотидов), делеции ("выпадение одной или более пар нуклеотидов), замены нуклеотид-ных пар (AT -><- ГЦ; AT -><-; ЦГ; или AT -><- ТА), инверсии (переворот участка гена на 180°).
Хромосомные мутации (перестройки, или аберрации) — это изменения в структуре хромосом, которые можно выявить и изучить под световым микроскопом.
Известны перестройки разных типов (рис. 3.13):
нехватка, или дефишенси, — потеря концевых участков хромосомы;
делеция — выпадение участка хромосомы в средней ее части;
дупликация — двух- или многократное повторение генов, локализованных в определенном участке хромосомы;
инверсия — поворот участка хромосомы на 180°, в результате чего в этом участке гены расположены в последовательности, обратной по сравнению с обычной;
транслокация — изменение положения какого-либо участка хромосомы в хромосомном наборе. К наиболее распространенному типу транслокаций относятся реципрокные, при которых происходит обмен участками между двумя негомологичными хромосомами. Участок хромосомы может изменить свое положение и без реципрокного обмена, оставаясь в той же хромосоме или включаясь в какую-то другую.
При дефишенси, делециях и дупликациях изменяется количество генетического материала. Степень фенотипического изменения зависит от того, насколько велики соответствующие участки хромосом и содержат ли они важные гены. Примеры дефишенси известны у многих организмов, включая человека. Тяжелое наследственное заболевание —синдром «кошачьего крика» (назван так по характеру звуков, издаваемых больными младенцами), обусловлен гетерозиготностью по дефишенси в 5-й хромосоме. Этот синдром сопровождается сильным нарушением роста и умственной отсталостью. Обычно дети с таким синдромом рано умирают, но некоторые доживают до зрелого возраста.
Геномные мутации — изменение числа хромосом в геноме клеток организма. Это явление происходит в двух направлениях: в сторону увеличения числа целых гаплоидных наборов (полиплоидия) и в сторону потери или включения отдельных хромосом(анеуплоидия).
Полиплоидия — кратное увеличение гаплоидного набора хромосом. Клетки с разным числом гаплоидных наборов хромосом называются триплоидными (Зn), тетраплоидными (4n), гексанло-идными (6n), октаплоидными (8n) и т. д.
Анеуплоидия, или гетероплодия, — явление, при котором клетки организма содержат измененное число хромосом, не кратное гаплоидному набору. Анеуплоиды возникают тогда, когда не расходятся или теряются отдельные гомологичные хромосомы в митозе и мейозе. В результате нерасхождения хромосом при гамето-генезе могут возникать половые клетки с лишними хромосомами, и тогда при последующем слиянии с нормальными гаплоидными гаметами они образуют зиготу 2n + 1 (трисомик)по определенной хромосоме. Если в гамете оказалось меньше на одну хромосому, то последующее оплодотворение приводит к образованию зиготы 1n - 1 (моносомик) по какой-либо из хромосом. Кроме того, встречаются формы 2n - 2, или нуллисомики, так как отсутствует пара гомологичных хромосом, и 2n + х, или полисомики.
Вопр
Методы изучения наследственности человека
К основным методам изучения наследственности человека относятся.
Клинико-генеалогический метод. Он был введен в конце XIX в. английским ученым Френсисом Гальтоном и основан на составлении и анализе родословных. В генетическую карту подробно записывают все сведения о человеке, который обратился за консультированием (в генетике его называют “пробанд”), составляется анамнез, так в медицине называется запись воспоминаний, связанных с историей болезни пациента, ее начало, последующее течение, выясняется возраст, в котором появились первые признаки заболевания. Затем собираются сведения о его пробанд. Существуют определенные опросники, анкеты, по которым работают врачи. Сбор такого материала длительный и трудоемкий процесс. В генеалогическом методе можно выделить два этапа: составление родословной и генеалогический анализ. При составлении родословной используются специальные символы графического изображения родословной
Цитогенетический метод (цито – это клетка). Цитогенетическим методом под световым микроскопом, применяя специальные методики окрашивания, изучают хромосомы различных клеток человека. Материалом для цитогенетических исследований могут быть клетки периферической крови, например, лимфоциты, клетки кожи (фибробласты), клетки, полученные из амниотической жидкости плода и др. Медики изучают особенности кариотипа больного человека. Кариотип – это совокупность хромосом клетки. У человека 46 хромосом, 23 пары гомологичных хромосом. Если число хромосом меняется хотя бы на одну хромосому в сторону уменьшения или увеличения – это признак серьезного генетического заболевания. Каждая пара хромосом человека имеет определенную форму, характеризуется расположением центромеры, окраской, длиной плеч. При различных заболеваниях эти внешние признаки строения хромосом могут меняться и служат критерием для постановки раннего диагноза заболевания. Это особенно важно, когда исследуются клетки, взятые из амниотической жидкости беременной женщины, что позволяет еще до рождения ребенка установить наследственную патологию и назначить нужное лечение. Много наследственных заболеваний сцеплены с половыми хромосомами. Половой хроматин определяют анализом эпителиальных клеток в соскобе слизистой оболочки щеки человека. У женщин вторая Х-хромосома обнаруживается в виде округлого характерного пятнышка в ядре клетки, ее называют тельцем Барра. Отсутствие тельца Барра у женщин свидетельствует о хромосомном заболевании – синдроме Шерешевского – Тернера.
Биохимические методы позволяют выявить изменения в обмене веществ, для уточнения диагноза заболевания. Заболевания, в основе которых лежат нарушения обмена веществ, составляют значительную часть наследственных заболеваний, так как изменения, которые происходят на уровне генов, не могут не повлечь за собой нарушения синтеза различных белков, принимающих важное участие в регуляции процессов жизнедеятельности.
Близнецовый метод позволяет оценить относительную роль среды и генетических факторов в развитии конкретного признака или заболевания. Особенно большой интерес для науки представляет изучение близнецовых пар однояйцовых, т.е. монозиготных близнецов, которые были разлучены в детстве и воспитывались в разных семьях, в разных условиях. Поскольку у таких людей набор хромосом полностью одинаков, на развитие конкретного признака или заболевания будут влиять именно различия в окружающей среде. Эти исследования показали, что далеко не все наследственные заболевания обязательно проявляются у конкретного человека, на их развитие большое влияние оказывает образ жизни самого человека, т.е. окружающая среда, например для таких наследственных болезней как сахарный диабет или шизофрения. Близнецовый метод применяется и для изучения дизиготных, разнояйцовых братьев и сестер, которые хотя и имеют различные генотипы, но при этом обладают большим сходством, так как несут гены одной супружеской пары.
Популяционно-генетический метод дает возможность рассчитать частоту нормальных и патологических генотипов в популяции: гетерозигот, гомозигот доминантных и рецессивных, а также частоту нормальных и патологических фенотипов. Это метод медицинской статистики. Следует помнить, что наследственные заболевания распределены по различным регионам земного шара, среди различных рас и народностей неравномерно. Знание частоты заболеваний в данном регионе способствует правильной организации профилактических мероприятий.
Методы пренатальной (внутриутробной, до рождения человека) диагностики представляют собой совокупность исследований, позволяющих обнаружить заболевание до рождения ребенка. К основным методам пренатальной диагностики относятся ультразвуковое обследование, биопсия (взятие небольшого кусочка ткани из органа или какой-либо части тела для микроскопического исследования), хориона (наружная оболочка плода) и многие другие.
Метод моделирования изучает болезни человека на животных, которые могут болеть этими заболеваниями. В основе лежит закон Вавилова о гомологичных рядах наследственной изменчивости, например, гемофилию, сцепленную с полом, можно изучать на собаках, эпилепсию – на кроликах, сахарный диабет, мышечную дистрофию – на крысах, незаращение губы и неба – на мышах.
Генетика соматических клеток изучает наследственность и изменчивость соматических клеток, т.е. клеток тела, не половых. Соматические клетки имеют весь набор генетической информации, на них можно изучать генетические особенности целостного организма.
Соматические клетки человека получают для генетических исследований из материала биопсий (прижизненное иссечение тканей или органов), когда для исследования берется небольшой кусочек ткани. Как правило, это делается во время операций, когда надо установить имеет ли данное образование, например, опухоль, злокачественную или доброкачественную природу.
В настоящее время применяют следующие методы генетики соматических клеток: простое культивирование, гибридизация, клонирование и селекция. Простое культивирование – это размножение клеток на питательных средах, чтобы получить их в достаточном количестве, для цитогенетического, биохимического, иммунологического и других методов.
При гибридизации соматических клеток можно скрещивать клетки, полученные от разных людей, а также клетки человека с клетками мыши, крысы, морской свинки, обезьяны и других животных. Такие исследования позволяют установить группы сцепления, а используя хромосомные перестройки выявлять последовательность расположения генов и строить генетические карты хромосом человека.
Клонирование – это получение потомства одной клетки (клона). Все клетки в результате клонирования будут одинакового генотипа.
Селекция – это отбор клеток с заранее заданными свойствами. Затем проводится выращивание и размножение этих клеток на специальных питательных средах. Например, можно использовать питательную среду без лактозы, но с добавлением других сахаров, и из большого числа клеток, помещенных в нее, могут оказаться несколько, способных жить в отсутствии лактозы. Потом из таких клеток получают клон.
Вопр
Фенилкетонури́я (фенилпировиноградная олигофрения) — наследственное заболевание группы ферментопатий, связанное с нарушением метаболизма аминокислот, главным образом фенилаланина. Сопровождается накоплением фенилаланина и его токсических продуктов, что приводит к тяжёлому поражению ЦНС, проявляющемуся, в частности, в виде нарушения умственного развития.
Вследствие метаболического блока активируются побочные пути обмена фенилаланина, и в организме происходит накопление его токсичных производных — фенилпировиноградной и фениломолочной кислот, которые в норме практически не образуются. Кроме того, образуются также почти полностью отсутствующие в норме фенилэтиламин и ортофенилацетат, избыток которых вызывает нарушение метаболизма липидов в головном мозге. Предположительно, это и ведёт к прогрессирующему снижению интеллекта у таких больных вплоть до идиотии. Окончательно механизм развития нарушений функций мозга при фенилкетонурии остается неясным. Среди причин также предполагается дефицит нейромедиаторов мозга, вызванный относительным снижением количества тирозина и других «больших» аминокислот, конкурирующих с фенилаланином при переносе через гематоэнцефалический барьер, и прямое токсическое действие фенилаланина. Производится полуколичественным тестом или количественным определением фенилаланина в крови. При нелеченных случаях возможно выявление продуктов распада фенилаланина (фенилкетонов) в моче (не ранее 10-12 дня жизни ребенка). Также возможно определение активности фермента фенилаланингидроксилазы в биоптате печени и поиск мутаций в гене фенилаланингидроксилазы. Для диагностики 2 и 3 типа, связанных с мутацией в гене, отвечающем за синтез кофактора, необходимы дополнительные диагностические исследования. В возрасте от 2-4 месяцев у больных появляются такие симптомы, как вялость, судороги, экзема, мышиный запах.
Лечение и профилактика
При своевременной диагностике патологических изменений можно полностью избежать, если с рождения и до полового созревания ограничить поступление в организм фенилаланина с пищей.
Позднее начало лечения хотя и даёт определённый эффект, но не устраняет развившихся ранее необратимых изменений ткани мозга.
Некоторые из современных газированных напитков, жевательных резинок и лекарственных препаратов содержат фенилаланин в форме дипептида (аспартам), о чём производители обязаны предупреждать на этикетке. При рождении ребёнка в роддомах на 3-4 сутки берут анализ крови и проводят неонатальный скрининг для обнаружения врожденных заболеваний обмена веществ. На этом этапе возможно обнаружение фенилкетонурии, и, как следствие, возможно раннее начало лечения для предотвращения необратимых последствий. Лечение проводится в виде строгой диеты от обнаружения заболевания как минимум до полового созревания, многие авторы придерживаются мнения о необходимости пожизненной диеты. Диета исключает мясные, рыбные, молочные продукты и другие продукты, содержащие животный и, частично, растительный белок. Дефицит белка восполняется аминокислотными смесями без фенилаланина. Кормление грудью детей, больных фенилкетонурией, возможно и может быть успешным при соблюдении некоторых ограничений[ Альбинизм - это отсутствие пигмента в коже, волосах, тканях глаза. Различают полный альбинизм, при котором пигмент отсутствует во всем организме, и частичный альбинизм, при котором пигмент отсутствует только в отдельных органах, например в глазах. При общем альбинизме вся кожа, в том числе и кожа век, имеет бледно-розовую или молочно-белую окраску. Брови и ресницы тоже обесцвечены, белы. Изменения при альбинизме не ограничиваются кожей, а проявляются большей или меньшей недостаточностью пигмента внутри глаза: в радужке, в хориоидее, в сетчатке.
Из-за альбинизма развивается фотофобия - светобоязнь, человек не может переносить яркий свет и вынужден носить темные очки или темные контактные линзы с отверстием в центре. Данное отклонение связано с отсутствием в организме пигмента, который носит название меланин. Меланин придает окраску нашей коже, волосам, глазам. Он содержится в сосудистой оболочке глаза, благодаря чему свет попадает в глаз только через зрачок. Роль меланина в глазу очень важна. Недостаточность пигмента в сетчатке приводит к возникновению особого зрительного расстройства - никталопии. Человек, страдающий этим расстройством, плохо видит при дневном освещении и лучше - при сумеречном освещении. Существуют методы, позволяющие найти в гене мутацию, ответственную за болезнь, или идентифицировать ДНК-маркер, который генетически связан с больным геном. С помощью генетических диагностических тестов, основанных на анализе ДНК, можно выявлять генетические дефекты в организме на ранних стадиях его развития и даже еще до рождения ребенка. Нетяжелые непрогрессирующие наследственные аномалии не являются основанием для ограничения деторождения, но этот вопрос всегда лучше решать со специалистом.
Галактоземия - редкое генетическое нарушение обмена веществ, при котором изменяется нормальный процесс метаболизма углеводов (сахаров) галактозы. Галактоземию не следует путать с непереносимостью лактозы, ведь эти болезни никак не связаны. Галактоземия наследуется за аутосомно-рецессивным типом и возникает из-за дефицита активности фермента, отвечающего за усвоение организмом галактозы.
ДИАГНОСТИКА И ДИФДИАГНОСТИКА
Позитивные пробы на сахар и обнаружение галактозы в моче в первые дни жизни, а также уровень ее в крови более 0,2 г/л требуют специального обследования ребенка на галактоземию.
Существуют специальные методы определения активности ферментов, превращающихся в галактозу, которые выполняются в централизованных биохимических лабораториях.
Дифференциальный диагноз проводится обычно с сахарным диабетом.
Тяжелые формы заканчиваются летально в первые месяцы жизни, при затяжном течении на первый план могут выступать явления хронической недостаточности печени или поражения центральной нервной системы.
ЛЕЧЕНИЕ И ПРОФИЛАКТИКА
При подтверждении диагноза необходим перевод ребенка на питание с исключением, главным образом, женского молока. Для этого разработаны специальные продукты: сояваль, нутрамиген, безлактозный энпит. Рекомендуются заменные переливания крови, дробные гемотрансфузии, вливания плазмы. Из лекарственных препаратов показано назначение оротата калия, АТФ, кокарбоксилазы, комплекс витаминов.
Показана высокая эффективность раннего выявления беременных в семьях высокого риска и внутриутробной профилактики, состоящей в исключении молока из диеты беременных.
Учет семей риска позволяет рано, т. е. еще в доклинической стадии, подвергнуть специальному обследованию новорожденного и при положительных результатах перевести его на безлактозное вскармливание. Для раннего выявления предложены также специальные скрининг-программы массового обследования новорожденных.
Серповидно-клеточная анемия- это наследственная гемоглобинопатия, связанная с таким нарушением строения белка гемоглобина, при котором он приобретает особое кристаллическое строение - так называемый гемоглобин S. Эритроциты, несущие гемоглобин S вместо нормального гемоглобина А, под микроскопом имеют характерную серпообразную форму (форму серпа), за что эта форма гемоглобинопатии и получила название серповидно-клеточной анемии.
Серповидно-клеточная анемия весьма распространена в регионах мира, эндемичных по малярии, причем больные серповидно-клеточной анемией обладают повышенной (хотя и не абсолютной) врожденной устойчивостью к заражению различными штаммами малярийного плазмодия. Серповидные эритроциты этих больных также не поддаются заражению малярийным плазмодием в пробирке.
В основе диагностики серповидно-клеточной анемиилежит анализ физических свойств гемоглобина. Первым и самым старым методом такого анализа является исследование т.н. «влажного мазка». При смачивании мазка крови метабисульфитом натрия эритроциты отдают кислород и под микроскопом можно увидеть характерное изменение их формы. Для большей точности через 24 часа исследование повторяют. Другой, более распространенный метод основан на выявлении гемоглобина серповидных клеток по его сниженной растворимости в некоторых буферных растворах, что определяют по мутности раствора, содержащего такой гемоглобин. Широкое использование этого метода связано с возможностью быстрого получения результатов (уже через 10–15 минут).
К сожалению, указанные методы не позволяют отличить гетерозиготное состояние от гомозиготного. В настоящее время это можно сделать только с помощью электрофореза гемоглобина, т.е. анализа его подвижности в электрическом поле. Без такого анализа невозможны ни точная диагностика, ни надежное консультирование, но для массовых обследований он слишком дорог и занимает много времени.
Вопр
К хромосомным относятся болезни, обусловленные геномными мутациями или структурными изменениями отдельных хромосом. Хромосомные болезни возникают в результате мутаций в половых клетках одного из родителей. Из поколения в поколение передаются не более 3—5 % из них. Хромосомными нарушениями обусловлены примерно 50 % спонтанных абортов и 7 % всех мёртворождений.
Все хромосомные болезни принято делить на две группы: аномалии числа хромосом и нарушения структуры хромосом.
Дата добавления: 2016-06-13; просмотров: 1537;