О) Лекция № 10. Понятие об обмене веществ. Биосинтез белков

Обмен веществ

Обмен веществ — важнейшее свойство живых организмов. Совокупность реакций обмена веществ, протекающих в организме, называется метаболизмом. Метаболизм состоит из реакций ассимиляции (пластического обмена, анаболизма) и реакций диссимиляции (энергетического обмена, катаболизма). Ассимиляция — совокупность реакций биосинтеза, протекающих в клетке, диссимиляция — совокупность реакций распада и окисления высокомолекулярных веществ, идущих с выделением энергии. Эти группы реакций взаимосвязаны: реакции биосинтеза невозможны без энергии, которая выделяется в реакциях энергетического обмена, реакции диссимиляции не идут без ферментов, образующихся в реакциях пластического обмена.

По типу обмена веществ организмы подразделяются на две группы: автотрофы и гетеротрофы. Автотрофы — организмы, способные синтезировать органические вещества из неорганических и использующие для этого синтеза или солнечную энергию, или энергию, выделяющуюся при окислении неорганических веществ. Гетеротрофы — организмы, использующие для своей жизнедеятельности органические вещества, синтезированные другими организмами. В качестве источника углерода автотрофы используют неорганические вещества (СО2), а гетеротрофы — экзогенные органические. Источники энергии: у автотрофов — энергия солнечного света (фотоавтотрофы) или энергия, выделяющаяся при окислении неорганических соединений (хемоавтотрофы), у гетеротрофов — энергия окисления органических веществ (хемогетеротрофы).

Большинство живых организмов относится или к фотоавтотрофам (растения), или к хемогетеротрофам (грибы, животные). Если организмы, в зависимости от условий, ведут себя как авто- либо как гетеротрофы, то их называют миксотрофами (эвглена зеленая).

Биосинтез белков

Биосинтез белков является важнейшим процессом анаболизма. Все признаки, свойства и функции клеток и организмов определяются в конечном итоге белками. Белки недолговечны, время их существования ограничено. В каждой клетке постоянно синтезируются тысячи различных белковых молекул. В начале 50-х гг. ХХ в. Ф. Крик сформулировал центральную догму молекулярной биологии: ДНК → РНК → белок. Согласно этой догме способность клетки синтезировать определенные белки закреплена наследственно, информация о последовательности аминокислот в белковой молекуле закодирована в виде последовательности нуклеотидов ДНК. Участок ДНК, несущий информацию о первичной структуре конкретного белка, называется ген. Гены не только хранят информацию о последовательности аминокислот в полипептидной цепочке, но и кодируют некоторые виды РНК: рРНК, входящие в состав рибосом, и тРНК, отвечающие за транспорт аминокислот. В процессе биосинтеза белка выделяют два основных этапа: транскрипция — синтез РНК на матрице ДНК (гена) — и трансляция — синтез полипептидной цепи.

Генетический код и его свойства

Генетический код — система записи информации о последовательности аминокислот в полипептиде последовательностью нуклеотидов ДНК или РНК. В настоящее время эта система записи считается расшифрованной.

Свойства генетического кода:

1. триплетность: каждая аминокислота кодируется сочетанием из трех нуклеотидов (триплетом, кодоном);

2. однозначность (специфичность): триплет соответствует только одной аминокислоте;

3. вырожденность (избыточность): аминокислоты могут кодироваться несколькими (до шести) кодонами;

4. универсальность: система кодирования аминокислот одинакова у всех организмов Земли;

5. неперекрываемость: последовательность нуклеотидов имеет рамку считывания по 3 нуклеотида, один и тот же нуклеотид не может быть в составе двух триплетов;

6. из 64 кодовых триплетов 61 — кодирующие, кодируют аминокислоты, а 3 — бессмысленные (в РНК — УАА, УГА, УАГ), не кодируют аминокислоты. Они называются кодонами-терминаторами, поскольку блокируют синтез полипептида во время трансляции. Кроме того, есть кодон-инициатор (в РНК — АУГ), с которого трансляция начинается.

(function(w, d, n, s, t) { w[n] = w[n] || []; w[n].push(function() { if (screen.width '800') { Ya.Direct.insertInto(53383, "yandex_ad", { site_charset: "windows-1251", ad_format: "direct", font_size: 1, type: "horizontal", border_type: "block", limit: 4, title_font_size: 3, site_bg_color: "FFFFFF", header_bg_color: "1D865E", border_color: "1D865E", title_color: "3B6162", url_color: "17A470", all_color: "17A470", text_color: "000000", hover_color: "00CC66", favicon: true }); } }); t = d.documentElement.firstChild; s = d.createElement("script"); s.type = "text/javascript"; s.src = "http://an.yandex.ru/system/context.js"; s.setAttribute("async", "true"); t.insertBefore(s, t.firstChild); })(window, document, "yandex_context_callbacks"); Таблица генетического кода

Первое основание Второе основание Третье основание
У(А) Ц(Г) А(Т) Г(Ц)
У(А) Фен Фен Лей Лей Сер Сер Сер Сер Тир Тир — — Цис Цис — Три У(А) Ц(Г) А(Т) Г(Ц)
Ц(Г) Лей Лей Лей Лей Про Про Про Про Гис Гис Глн Глн Арг Арг Арг Арг У(А) Ц(Г) А(Т) Г(Ц)
А(Т) Иле Иле Иле Мет Тре Тре Тре Тре Асн Асн Лиз Лиз Сер Сер Арг Арг У(А) Ц(Г) А(Т) Г(Ц)
Г(Ц) Вал Вал Вал Вал Ала Ала Ала Ала Асп Асп Глу Глу Гли Гли Гли Гли У(А) Ц(Г) А(Т) Г(Ц)

* Первый нуклеотид в триплете — один из четырех левого вертикального ряда, второй — один из верхнего горизонтального ряда, третий — из правого вертикального.

var begun_auto_pad = 179110770; var begun_block_id = 215205041; Реакции матричного синтеза

Это особая категория химических реакций, происходящих в клетках живых организмов. Во время этих реакций происходит синтез полимерных молекул по плану, заложенному в структуре других полимерных молекул-матриц. На одной матрице может быть синтезировано неограниченное количество молекул-копий. К этой категории реакций относятся репликация, транскрипция, трансляция и обратная транскрипция.

 

Название реакции матричного синтеза Характеристика процесса Основные компоненты
Репликация Синтез ДНК на матрице ДНК Дезоксирибонуклеозидтрифосфаты, ферменты
Транскрипция Синтез РНК на матрице ДНК Участок ДНК, рибонуклеозидтрифосфаты, ферменты
Трансляция Синтез полипептида на матрице РНК Рибосомы, иРНК, аминокислоты, тРНК, АТФ, ГТФ, ферменты
Обратная транскрипция Синтез ДНК на матрице РНК Дезоксирибонуклеозидтрифосфаты, ферменты

Строение гена эукариот

Ген — участок молекулы ДНК, кодирующий первичную последовательность аминокислот в полипептиде или последовательность нуклеотидов в молекулах транспортных и рибосомных РНК. ДНК одной хромосомы может содержать несколько тысяч генов, которые располагаются в линейном порядке. Место гена в определенном участке хромосомы называется локусом. Особенностями строения гена эукариот являются: 1) наличие достаточно большого количества регуляторных блоков, 2) мозаичность (чередование кодирующих участков с некодирующими). Экзоны (Э) — участки гена, несущие информацию о строении полипептида. Интроны (И) — участки гена, не несущие информацию о строении полипептида. Число экзонов и интронов различных генов разное; экзоны чередуются с интронами, общая длина последних может превышать длину экзонов в два и более раз. Перед первым экзоном и после последнего экзона находятся нуклеотидные последовательности, называемые соответственно лидерной (ЛП) и трейлерной последовательностью (ТП). Лидерная и трейлерная последовательности, экзоны и интроны образу ют единицу транскрипции. Промотор (П) — участок гена, к которому присоединяется фермент РНК-полимераза, представляет собой особое сочетание нуклеотидов. Перед единицей транскрипции, после нее, иногда в интронах находятся регуляторные элементы (РЭ), к которым относятся энхансеры и сайленсеры. Энхансеры ускоряют транскрипцию, сайленсеры тормозят ее.

(function(w, d, n, s, t) { w[n] = w[n] || []; w[n].push(function() { if (screen.width '800') { Ya.Direct.insertInto(53383, "yandex_ad", { site_charset: "windows-1251", ad_format: "direct", font_size: 1, type: "horizontal", border_type: "block", limit: 4, title_font_size: 3, site_bg_color: "FFFFFF", header_bg_color: "1D865E", border_color: "1D865E", title_color: "3B6162", url_color: "17A470", all_color: "17A470", text_color: "000000", hover_color: "00CC66", favicon: true }); } }); t = d.documentElement.firstChild; s = d.createElement("script"); s.type = "text/javascript"; s.src = "http://an.yandex.ru/system/context.js"; s.setAttribute("async", "true"); t.insertBefore(s, t.firstChild); })(window, document, "yandex_context_callbacks"); Транскрипция у эукариот

Транскрипция — синтез РНК на матрице ДНК. Осуществляется ферментом РНК-полимеразой.

РНК-полимераза может присоединиться только к промотору, который находится на 3'-конце матричной цепи ДНК, и двигаться только от 3'- к 5'-концу этой матричной цепи ДНК. Синтез РНК происходит на одной из двух цепочек ДНК в соответствии с принципами комплементарности и антипараллельности. Строительным материалом и источником энергии для транскрипции являются рибонуклеозидтрифосфаты (АТФ, УТФ, ГТФ, ЦТФ).

В результате транскрипции образуется «незрелая» иРНК (про-иРНК), которая проходит стадию созревания или процессинга. Процессинг включает в себя: 1) КЭПирование 5'-конца, 2) полиаденилирование 3'-конца (присоединение нескольких десятков адениловых нуклеотидов), 3) сплайсинг (вырезание интронов и сшивание экзонов). В зрелой иРНК выделяют КЭП, транслируемую область (сшитые в одно целое экзоны), нетранслируемые области (НТО) и полиадениловый «хвост».

Транслируемая область начинается кодоном-инициатором, заканчивается кодонами-терминаторами. НТО содержат информацию, определяющую поведение РНК в клетке: срок «жизни», активность, локализацию.

Транскрипция и процессинг происходят в клеточном ядре. Зрелая иРНК приобретает определенную пространственную конформацию, окружается белками и в таком виде через ядерные поры транспортируется к рибосомам; иРНК эукариот, как правило, моноцистронны (кодируют только одну полипептидную цепь).

Трансляция

Трансляция — синтез полипептидной цепи на матрице иРНК.

Органоиды, обеспечивающие трансляцию, — рибосомы. У эукариот рибосомы находятся в некоторых органоидах — митохондриях и пластидах (70S-рибосомы), в свободном виде в цитоплазме (80S-рибосомы) и на мембранах эндоплазматической сети (80S-рибосомы). Таким образом, синтез белковых молекул может происходить в цитоплазме, на шероховатой эндоплазматической сети, в митохондриях и пластидах. В цитоплазме синтезируются белки для собственных нужд клетки; белки, синтезируемые на ЭПС, транспортируются по ее каналам в комплекс Гольджи и выводятся из клетки. В рибосоме выделяют малую и большую субъединицы. Малая субъединица рибосомы отвечает за генетические, декодирующие функции; большая — за биохимические, ферментативные.

В малой субъединице рибосомы расположен функциональный центр (ФЦР) с двумя участками — пептидильным (Р-участок) и аминоацильным (А-участок). В ФЦР может находиться шесть нуклеотидов иРНК, три — в пептидильном и три — в аминоацильном участках.

var begun_auto_pad = 179110770; var begun_block_id = 215205041; Для транспорта аминокислот к рибосомам используются транспортные РНК, тРНК (лекция №4). Длина тРНК от 75 до 95 нуклеотидных остатков. Они имеют третичную структуру, по форме напоминающую лист клевера. В тРНК различают антикодоновую петлю и акцепторный участок. В антикодоновой петле РНК имеется антикодон, комплементарный кодовому триплету определенной аминокислоты, а акцепторный участок на 3'-конце способен с помощью фермента аминоацил-тРНК-синтетазы присоединять именно эту аминокислоту (с затратой АТФ). Таким образом, у каждой аминокислоты есть свои тРНК и свои ферменты, присоединяющие аминокислоту к тРНК.

1 — антикодон; 2 — участок, связывающий аминокислоту. Транспорт аминокислот к рибосомам: 1 — фермент; 2 — тРНК; 3 — аминокислота.

Двадцать видов аминокислот кодируются 61 кодоном, теоретически может быть 61 вид тРНК с соответствующими антикодонами. Но кодируемых аминокислот всего 20 видов, значит, у одной аминокислоты может быть несколько тРНК. Установлено существование нескольких тРНК, способных связываться с одним и тем же кодоном (последний нуклеотид в антикодоне тРНК не всегда важен), поэтому в клетке обнаружено всего около 40 различных тРНК.

Синтез белка начинается с того момента, когда к 5'-концу иРНК присоединяется малая субъединица рибосомы, в Р-участок которой заходит метиониновая тРНК (транспортирующая аминокислоту метионин). Следует отметить, что любая полипептидная цепь на N-конце сначала имеет метионин, который в дальнейшем чаще всего отщепляется. Синтез полипептида идет от N-конца к С-концу, то есть пептидная связь образуется между карбоксильной группой первой и аминогруппой второй аминокислот.

Затем происходит присоединение большой субъединицы рибосомы, и в А-участок поступает вторая тРНК, чей антикодон комплементарно спаривается с кодоном иРНК, находящимся в А-участке.

Пептидилтрансферазный центр большой субъединицы катализирует образование пептидной связи между метионином и второй аминокислотой. Отдельного фермента, катализирующего образование пептидных связей, не существует. Энергия для образования пептидной связи поставляется за счет гидролиза ГТФ.

Как только образовалась пептидная связь, метиониновая тРНК отсоединяется от метионина, а рибосома передвигается на следующий кодовый триплет иРНК, который оказывается в А-участке рибосомы, а метиониновая тРНК выталкивается в цитоплазму. На один цикл расходуется 2 молекулы ГТФ. В А-участок заходит третья тРНК, и образуется пептидная связь между второй и третьей аминокислотами.

(function(w, d, n, s, t) { w[n] = w[n] || []; w[n].push(function() { if (screen.width '800') { Ya.Direct.insertInto(53383, "yandex_ad", { site_charset: "windows-1251", ad_format: "direct", font_size: 1, type: "horizontal", border_type: "block", limit: 4, title_font_size: 3, site_bg_color: "FFFFFF", header_bg_color: "1D865E", border_color: "1D865E", title_color: "3B6162", url_color: "17A470", all_color: "17A470", text_color: "000000", hover_color: "00CC66", favicon: true }); } }); t = d.documentElement.firstChild; s = d.createElement("script"); s.type = "text/javascript"; s.src = "http://an.yandex.ru/system/context.js"; s.setAttribute("async", "true"); t.insertBefore(s, t.firstChild); })(window, document, "yandex_context_callbacks"); Трансляция идет до тех пор, пока в А-участок не попадает кодон-терминатор (УАА, УАГ или УГА), с которым связывается особый белковый фактор освобождения. Полипептидная цепь отделяется от тРНК и покидает рибосому. Происходит диссоциация, разъединение субъединиц рибосомы.

Скорость передвижения рибосомы по иРНК — 5–6 триплетов в секунду, на синтез белковой молекулы, состоящей из сотен аминокислотных остатков, клетке требуется несколько минут. Первым белком, синтезированным искусственно, был инсулин, состоящий из 51 аминокислотного остатка. Потребовалось провести 5000 операций, в работе в течение трех лет принимали участие 10 человек.

В трансляции можно выделить три стадии: а) инициации (образование иницаторного комплекса), б) элонгации (непосредственно «конвейер», соединение аминокислот друг с другом), в) терминации (образование терминирующего комплекса).

Транскрипция и трансляция у прокариот

«Механизмы» сборки полинуклеотидных и полипептидных цепочек у прокариот и эукариот не различаются. Но в связи с тем, что гены прокариот не имеют экзонов и интронов (исключение — гены архебактерий), располагаются группами, и на эту группу генов приходится один промотор, появляются следующие особенности транскрипции и трансляции у прокариот.

1. В результате транскрипции образуется полицистронная иРНК, кодирующая несколько белков, совместно обеспечивающих определенную группу реакций.

2. иРНК имеет несколько центров инициации трансляции, терминации трансляции и НТО.

3. Не происходят КЭПирование, полиаденилирование и сплайсинг иРНК.

4. Трансляция начинается еще до завершения транскрипции; эти процессы не разделены во времени и пространстве, как это имеет место у эукариот.

1 — ДНК; 2 — РНК-полимераза; 3 — Нуклеозидтрифосфаты ГТФ, ЦТФ, АТФ, УТФ.

Можно добавить, что срок «жизни» прокариотических иРНК — несколько минут (у эукариот — часы и даже сутки).









Дата добавления: 2016-04-22; просмотров: 987;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.015 сек.