Процессы транспортирования жидкостей и газов
Перемещение жидкостей и газов в промышленности осуществляется в основном по трубопроводам. Различают магистральные и промышленные трубопроводы. Трубопроводный транспорт прогрессивен, экономичен, выгоден. Для него характерны: отсутствие потерь материалов в ходе транспортировки; возможность автоматизации процесса транспорта.
В систему трубопроводного транспорта входят: 1)трубопроводы; 2) резервуары-хранилища; 3) транспортирующие машины, которые в случае перемещения жидкостей называются насосами, а при перемещении газов - компрессорами.
Насосы и компрессоры служат для создания перепада давления на концах трубопроводов, благодаря которому и происходит перемещение жидких и газообразных сред.
Для регулирования потоков жидкостей и газов по трубопроводам на них устанавливают так называемую трубопроводную арматуру:
Ø краны;
Ø вентили;
Ø задвижки.
Расход энергии на перемещение жидкостей и газов зависит от скорости перемещения. С уменьшением скорости уменьшается расход энергии, однако одновременно снижается пропускная способность или мощность трубопровода. Поэтому существуют оптимальные скорости перемещения жидкостей и газов по трубопроводам, которые варьируют в широких пределах в зависимости от свойств жидкостей и газов (паров) и условий транспорта (температура, давление):
Ø для жидкостей: от 0,1 до 3 м/с
Ø для газов: от 2 до 25 м/с
Ø для паров: от 15 до 75 м/с
Насосы.
Насос – устройство для напорного перемещения жидкостей под действием сообщаемой энергии.
Основными параметрами, характеризующими работу насосов являются:
- производительность
- напор
- мощность
Производительность Q определяется объемом жидкости, подаваемой насосом в единицу времени. Выражается в следующих единицах: м3/с; м3/час; л/с; л/час и т.п.
Напор Н характеризует высоту столба жидкости, которую можно создать с помощью насоса.
Мощность определяется количеством энергии, потребляемой насосом в единицу времени (N).
Основными типами наиболее распространенных насосов в настоящее время являются следующие:
поршневые
- центробежные насосы - машины
- осевые
- пластинчатые ротационные
- шестеренчатые
- струйные насос – аппарат
Компрессорные машины по величине создаваемого избыточного давления делятся на следующие группы:
1) вентиляторы (до 0,1 ат);
2) газодувки (до 3,0 ат);
3) компрессоры (выше 3,0 ат);
4) вакуум-насосы.
Несмотря на конструкционные особенности все компрессорные машины можно рассматривать как разновидности компрессоров.
Компрессоры в свою очередь аналогично насосам делятся на:
- поршневые
- центробежные
- осевые
- ротационные
- струйные
Пневмотранспорт. Перемещение сыпучих материалов с помощью движущегося потока воздуха называют пневмотранспортом. Такие установки могут быть всасывающими (вакуум – транспорт) и нагнетательными (пневмотранспорт).
Принципиальной разницы между ними нет, поскольку в обоих случаях движущей силой является разность давлений на входе и выходе из трубопровода, обеспечивающая нужную скорость воздушного потока. Таким образом перемещают пылевидные, порошкообразные, зернистые, мелкокусковые грузы: цемент, гипс, соду, мел, полиэтилен и т.д.
Широкое распространение пневмотранспорта особенно на предприятиях по переработке пластмасс, строительных материалов, объясняется следующими причинами: 1) возможностью перемещения материалов в горизонтальном наклонном, вертикальном направлениях; 2) герметичностью трубопроводов и отсутствием потерь транспортируемых материалов; 3) сравнительной простотой конструкции, обслуживания и эксплуатации при незначительных занимаемых площадях; 4) возможностью полной автоматизации процесса транспортирования и распределения материала по бункерам; 5) возможностью совмещения транспортирования материала с его одновременной сушкой подогретым воздухом.
Тепловые процессы
К тепловым относятся процессы, скорость которых определяется скоростью переноса энергии в форме теплоты: нагревание, охлаждение, испарение, плавление и другие. Процессы переноса теплоты часто сопутствуют другим технологическим процессам: химического взаимодействия, разделения смесей и т.д.
По механизму переноса энергии различают три способа распространения теплоты – теплопроводность, конвективный перенос и тепловое излучение.
Теплопроводность – перенос энергии микрочастицами (молекулами, ионами, электронами) за счет их колебаний при тесном соприкосновении.
Процесс протекает по молекулярному механизму и поэтому теплопроводность зависит от внутреннего молекулярного строения рассматриваемого тела и является постоянной величиной.
Конвективный перенос теплоты – процесс переноса теплоты от стенки к движущейся относительно нее жидкости (газа) или от жидкости (газа) к стенке. Таким образом он обусловлен массовым движением вещества и происходит одновременно путем теплопроводности и конвекции.
В зависимости от причины, вызывающей движение жидкости, различают вынужденную и естественную конвенцию. При вынужденной конвекции движение обусловлено действием внешней силы – разности давлений, создаваемой насосом, вентилятором или иным источником (в том числе и природного происхождения, например, ветром).
При естественной конвекции движение возникает вследствие изменения плотности самой жидкости (газа), обусловленного термическим расширением.
Интенсивность конвективного переноса, теплоты зависит от распределения скорости в потоке жидкости (газа), т.е. от гидродинамической обстановки, которая в свою очередь зависит от многих факторов: формы теплопередающей поверхности, скорости движения, вязкости, плотности среды.
Тепловое излучение – перенос энергии в форме электромагнитных колебаний, поглощаемых телом. Источниками этих колебаний являются заряженные частицы – электроны и ионы, входящие в состав излучающего вещества. При высоких температурах тел тепловое излучение становится преобладающим по сравнению с теплопроводностью и конвективным обменом.
На практике, теплота чаще всего передается одновременно двумя или даже тремя способами. Однако обычно превалирующее значение имеет какой-нибудь один способ передачи теплоты.
При любом механизме переноса теплоты (теплопроводностью, конвекцией или лучеиспусканием) количество передаваемого тепла пропорционально поверхности, разности температур и соответствующему коэффициенту теплоотдачи.
В наиболее распространенном случае теплота передается от одной среды к другой через разделяющую их стенку. Такой вид теплообмена называется теплопередачей, а участвующие в ней среды - теплоносителями. Процесс теплопередачи состоит из трех стадий: 1) передачи теплоты нагретом средой стенке (теплоотдача); 2) перенос теплоты в стенке (теплопроводность); 3) перенос теплоты к холодной среде от нагретой стенки (теплоотдача).
Дата добавления: 2016-04-06; просмотров: 5884;