Симметрия и асимметрия в природе

Симметрия и асимметрия являются объективными свойствами природы, одними из фундаментальных в современном естествознании. Симметрия и асимметрия имеют универсальный, общий характер как свойство материального мира.

Симметрия (от греч. symmetria – соразмерность, порядок, гармония) является всеобщим свойством природы. Представление о симметрии у человека складывалось тысячелетиями. Термин «симметрия» фигурирует в представлениях человека как элемент чего-то «правильного», прекрасного и совершенного. В своих раздумьях над картиной мироздания человек определял симметрию как магическое качество природы, ее целесообразность, совершенство и старался отразить эти свойства в музыке, поэзии, архитектуре. В определенной мере симметрия выражает степень упорядоченности системы. В связи с этим имеется тесная корреляционная связь энтропии как меры неупорядоченности с симметрией: чем выше степень организованности вещества, тем выше симметрия и ниже энтропия.

Степень симметрии природных систем отражается в симметрии математических уравнений, законов, отображающих их состояние, в неизменности каких-либо их свойств по отношению к преобразованиям симметрии.

Симметрия – это понятие, отражающее существующий в природе порядок, пропорциональность и соразмерность между элементами какой-либо системы или объекта природы, упорядоченность, равновесие системы, устойчивость, то есть некий элемент гармонии.

Асимметрия – понятие, противоположное симметрии, отражающее разупорядочение системы, нарушение равновесия, что связано с изменением и развитием системы.

Из определений симметрии и асимметрии следует, что развивающаяся динамическая система должна быть обязательно несимметричной и неравновесной.

Современное естествознание представлено целой иерархией симметрий, которая отражает свойства иерархии уровней организации материи. Выделяют различные формы симметрий: калибровочные, пространственно-временные, изотопические, перестановочные, зеркальные и т. д. Все эти виды симметрий подразделяются на внешние и внутренние.

Внутреннюю симметрию невозможно наблюдать, она скрыта в математических уравнениях и законах, выражающих состояние исследуемой системы. Пример тому – уравнение Максвелла, описывающее взаимосвязь электрических и магнитных явлений, или теория гравитации Эйнштейна, связывающая свойства пространства, времени и тяготения.

Внешняя симметрия (пространственная или геометрическая) представлена в природе большим многообразием. Это симметрия кристаллов, молекул, живых организмов.

Для чего нужна симметрия живому и как она возникла?

Живые организмы формировали свою симметрию в процессе эволюции. Зародившиеся в водах океана, первые живые организмы имели правильную сферическую форму. Внедрение организмов в другие среды заставляло их адаптироваться к новым специфическим условиям. Один из способов такой адаптации – симметрия на уровне физической формы. Симметричное расположение частей органов тела обеспечивает живым организмам равновесие при движении и функционировании, жизнестойкость и адаптацию. Довольно симметричны внешние формы крупных животных, человека. Растительный мир организмов также наделен симметрией, что связано с борьбой за свет, физической устойчивостью к полеганию (закон всемирного тяготения). Например, конусообразная крона ели имеет строго вертикальную ось симметрии – вертикальный ствол, утолщенный книзу для устойчивости. Отдельные ветви симметрично расположены по отношению к стволу, а форма конуса способствует рациональному использованию кроной светового потока солнечной энергии, увеличивает устойчивость. Таким образом, благодаря притяжению и законам естественного отбора ель выглядит эстетически красиво и «построена» рационально. Внешняя симметрия насекомых и животных помогает им держать равновесие при движении, извлекать максимум энергии из окружающей среды и рационально ее использовать.

В физических и химических системах симметрия приобретает еще более глубокий смысл. Так, наиболее устойчивы молекулы, обладающие высокой симметрией (инертные газы). Симметрия молекул определяет характер молекулярных спектров. Высокая симметрия характерна для кристаллов. Кристаллы – это симметричные тела, их структура определяется периодическим повторением в трех измерениях элементарного атомного мотива.

Асимметрия также широко распространена в мире.

Внутреннее расположение отдельных органов в живых организмах часто асимметрично. Например, сердце расположено слева у человека, печень – справа и т. д. Л. Пастер, французский микробиолог и иммунолог, выделил левые и правые кристаллы винной кислоты. Молекула ДНК асимметрична – ее спираль всегда закручена вправо. Все аминокислоты и белки, входящие в состав живых организмов, способны отклонять поляризованный луч света влево.

В отличие от молекул неживой природы, где левые и правые молекулы встречаются часто, то есть носят в основном симметричный характер, молекулы органических веществ характеризуются ярко выраженной асимметрией. Придавая большое значение асимметрии живого, В. И. Вернадский предполагал, что именно здесь проходит тонкая граница между химией живого и неживого. Л. Пастер также, основываясь на этих признаках, провел границу между живым и неживым. Следует также отметить, что живые организмы (растения) в процессе жизнедеятельности поглощают из окружающей среды (почвы) в значительной степени химические соединения минеральной пищи, молекулы которой симметричны и в своем организме превращают их в асимметричные органические вещества: крахмал, белки глюкозу и т. д. Симметрия молекул пищевых веществ живого организма согласуется с симметрией молекул самого организма. В противном случае пища будет несовместимой (ядовитой).

Структура компонентов клетки также асимметрична, что имеет большое значение для ее обмена веществ, энергетической обеспеченности, а также способствует более высокой скорости протекания биохимических реакций.

Симметрия и асимметрия – это две полярные характеристики объективного мира. Фактически в природе нет чистой (абсолютной) симметрии или асимметрии. Эти категории – противоположности, которые всегда находятся в единстве и борьбе. Там, где ослабевает симметрия, возрастает асимметрия, и наоборот. На разных уровнях развития материи ей свойственна то симметрия, то асимметрия. Однако эти две тенденции едины, а их борьба носит абсолютный характер. Эти категории тесно связаны с понятиями устойчивости и неустойчивости систем, порядка и беспорядка, организации и дезорганизации, отражающими свойства систем и динамику развития, а также взаимосвязь между динамическими и статическими законами.

Полагая, что равновесие есть состояние покоя и симметрии, а асимметрия приводит к движению и неравновесному состоянию, можно считать, что понятие равновесия играет в биологии не менее важную роль, чем в физике. Принцип устойчивости термодинамического равновесия живых систем характеризует специфику биологической формы движения материи. Именно устойчивое динамическое равновесие (асимметрия) является ключевым принципом постановки и решения проблемы происхождения жизни.

 








Дата добавления: 2016-04-06; просмотров: 5748;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.