Проверка правильности операторов

 

Задачи проверки правильности операторов:

1) выяснить, все ли переменные, встречающиеся в операторах, описаны;

2) установить соответствие типов в операторе присваивания слева и справа от символа «:=»;

3) определить, является ли выражение Е в операторах условия и цикла булевым.

Данные задачи решаются путем включения в правило S ранее рассмотренной процедуры checkid, а также новых процедур eqtype и eqbool, имеющих следующий вид:

procedure eqtype;

begin

outst(t2); outst(t1);

if t1<>t2 then ERR

end;

procedure eqbool;

begin

outst(t);

if t<>bool then ERR

end;

 

Правило S с учетом процедур СеА примет вид:

 

S® I <checkid> := E <eqtype> | if E <eqbool> then S else S

while E <egbool> do S | write (E) | read (I <checkid> )

Генерация кода

Результатом СиА должно быть некоторое внутреннее представление исходной цепочки лексем, которое отражает ее синтаксическую структуру. Программа в таком виде может либо транслироваться в объектный код, либо интерпретироваться.

Генерация объектного кода - это перевод компилятором внутреннего представления программы в цепочку символов выходного языка. Генерация объектного кода порождает результирующую объектную программу на языке ассемблера или непосредственно на машинном языке (в машинных кодах). Внутреннее представление программы может иметь любую структуру в зависимости от реализации компилятора, в то время как результирующая программа всегда представляет собой линейную последовательность команд. Поэтому генерация объектного кода (объектной программы) в любом случае должна выполнять действия, связанные с преобразование сложных синтаксических структур в линейные цепочки.

 

Формы внутреннего представления программы

Возможны различные формы внутреннего представления синтаксических конструкций исходной программы в компиляторе. Но формы представления, используемые на этапах синтаксического анализа, оказываются неудобными при генерации и оптимизации объектного кода. Поэтому перед оптимизацией и непосредственно перед генерацией объектного кода внутреннее представление программы может преобразовываться в одну из соответствующих форм записи.

Выделяют следующие общепринятые способы внутреннего представления программы:

1) многоадресный код с явно именуемым результатом (тетрады);

2) многоадресный код с неявно именуемым результатом (триады);

3) синтаксические деревья;

4) постфиксная запись;

5) машинные команды или ассемблерный код.

Тетрады

Тетрады представляют собой запись операций в форме из четырех составляю­щих: операция, два операнда и результат операции. Например, тетрады могут выглядеть так: <операция>(<операнд1>,<олеранд2>.<результат>).

Тетрады представляют собой линейную последовательность команд. При вычис­лении выражения, записанного в форме тетрад, они вычисляются одна за другой последовательно. Каждая тетрада в последовательности вычисляется так: опера­ция, заданная тетрадой, выполняется над операндами и результат ее выполнения помещается в переменную, заданную результатом тетрады. Если какой-то из операндов (или оба операнда) в тетраде отсутствует (например, если тетрада представляет собой унарную операцию), то он может быть опущен или заменен пустым операндом (в зависимости от принятой формы записи и ее реализации).

Результат вычисления тетрады никогда опущен быть не может, иначе тетрада полностью теряет смысл. Порядок вычисления тетрад может быть изменен, ни только если допустить наличие тетрад, целенаправленно изменяющих этот поря­док (например, тетрады, вызывающие переход па несколько шагов вперед или назад при каком-то условии).

Тетрады представляют собой линейную последовательность, а потому для них несложно написать тривиальный алгоритм, который будет преобразовывать
последовательность тетрад в последовательность команд результирующей программы (либо последовательность команд ассемблера). В этом их преимущество перед синтаксическими деревьями. А в отличие от команд ассемблера тетрады не зависят от архитектуры вычислительной системы, на которую ориентирована результирующая программа. Поэтому они представляют собой машинно-незави­симую форму внутреннего представления программы.

Тетрады требуют больше памяти для своего представления, чем триады, они так­же не отражают явно взаимосвязь операций между собой. Кроме того, есть слож­ности с преобразованием тетрад в машинный код, так как они плохо отобража­ются в команды ассемблера и машинные коды, поскольку в наборах команд большинства современных компьютеров редко встречаются операции с тремя операндами.

Например, выражение A:=B*C+D-B*10, записанное в виде тетрад, будет иметь вид:

* ( B, C, T1 )

+ ( T1, D, T2 )

* ( В, 10, ТЗ )

- ( Т2, ТЗ, Т4)

:= ( Т4, 0, А )

Здесь все операции обозначены соответствующими знаками (при этом присвое­ние также является операцией). Идентификаторы Т1,…,Т4 обозначают времен­ные переменные, используемые для хранения результатов вычисления тетрад. Следует обратить внимание, что в последней тетраде (присвоение), которая требует только одного операнда, в качестве второго операнда выступает незначащий операнд «0».

 

Триады

Триады представляют собой запись операций в форме из трех составляющих: операция и два операнда. Например, триады могут иметь вид: <операция>(<операнд1>, <операнд2>). Особенностью триад является то, что один или оба операнда могут быть ссылками на другую триаду в том случае, если в качестве операнда данной триады выступает результат выполнения другой триады. Поэтому триады при записи последовательно нумеруют для удобства указания ссылок одних триад на другие (в реализации компилятора в качестве ссылок можно использовать не но­мера триад, а непосредственно ссылки в виде указателей — тогда при изменении нумерации и порядка следования триад менять ссылки не требуется).

Триады представляют собой линейную последовательность команд. При вычис­лении выражения, записанного в форме триад, они вычисляются одна за другой последовательно. Каждая триада в последовательности вычисляется так: опера­ция, заданная триадой, выполняется над операндами, а если в качестве одного из операндов (или обоих операндов) выступает ссылка на другую триаду, то берет­ся результат вычисления той триады. Результат вычисления триады нужно со­хранять во временной памяти, так как он может быть затребован последующими триадами. Если какой-то из операндов в триаде отсутствует (например, если триада представляет собой унарную операцию), то он может быть опущен или заменен пустым операндом (в зависимости от принятой формы записи и ее реа­лизации). Порядок вычисления триад, как и для тетрад, может быть изменен, но только если допустить наличие триад, целенаправленно изменяющих этот поря­док (например, триады, вызывающие переход на несколько шагов вперед или на­зад при каком-то условии).

Триады представляют собой линейную последовательность, а потому для них несложно написать тривиальный алгоритм, который будет преобразовывать по­следовательность триад в последовательность команд результирующей программы (либо последовательность команд ассемблера). В этом их преимущество перед синтаксическими деревьями. Однако здесь требуется также и алгоритм, отвечающий за распределение памяти, необходимой для хранения промежуточ­ных результатов вычисления, так как временные переменные для этой цели не используются. В этом отличие триад от тетрад.

Так же как и тетрады, триады не зависят от архитектуры вычислительной систе­мы, на которую ориентирована результирующая программа. Поэтому они пред­ставляют собой машинно-независимую форму внутреннего представления про­граммы.

Триады требуют меньше памяти для своего представления, чем тетрады, они также явно отражают взаимосвязь операций между собой, что делает их приме­нение удобным. Необходимость иметь алгоритм, отвечающий за распределение памяти для хранения промежуточных результатов, не является недостатком, так как удобно распределять результаты не только по доступным ячейкам времен­ной памяти, но и по имеющимся регистрам процессора. Это дает определенные преимущества. Триады ближе к двухадресным машинным командам, чем тетра­ды, а именно эти команды более всего распространены в наборах команд боль­шинства современных компьютеров. Например, выражение A:=B*C+D-B*10. записанное в виде триад, будет иметь вид:

1) * (B, C)

2) + (^1, D)

3) * (B, 10)

4) – (^2, ^3)

5) := (A, ^4)

Здесь операции обозначены соответствующим знаком (при этом присвоение так­же является операцией), а знак ^ означает ссылку операнда одной триады на ре­зультат другой.

 








Дата добавления: 2016-03-27; просмотров: 943;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.