Методология объектно-ориентированного программирования

Увеличение размеров программ приводило к необходимости привлечения большего числа программистов, что, в свою очередь, потребовало дополнительных ресурсов для организации их согласованной работы. В процессе разработки приложений заказчик зачастую изменял функциональные требования, что еще более усложняло процесс создания программного обеспечения.

Но не менее важными оказались качественные изменения, связанные со смещением акцента использования компьютеров. В эпоху "больших машин" основными потребителями программного обеспечения были такие крупные заказчики, как большие производственные предприятия, финансовые компании, государственные учреждения. Стоимость таких вычислительных устройств для небольших предприятий и организаций была слишком высока.

Позже появились персональные компьютеры, которые имели гораздо меньшую стоимость и были значительно компактнее. Это позволило широко использовать их в малом и среднем бизнесе. Основными задачами в этой области являются обработка данных и манипулирование ими, поэтому вычислительные и расчетно-алгоритмические задачи с появлением персональных компьютеров отошли на второй план. Как показала практика, традиционные методы процедурного программирования не способны справиться ни с нарастающей сложностью программ и их разработки, ни с необходимостью повышения их надежности. Во второй половине 80-х годов возникла настоятельная потребность в новой методологии программирования, которая была бы способна решить весь этот комплекс проблем. Ею стало объектно-ориентированное программирование (ООП).

После составления технического задания начинается этап проектирования, или дизайна, будущей системы. Объектно-ориентированный подход к проектированию основан на представлении предметной области задачи в виде множества моделей для независимой от языка разработки программной системы на основе ее прагматики.

Последний термин нуждается в пояснении. Прагматика определяется целью разработки программной системы, например, обслуживание клиентов банка, управление работой аэропорта, обслуживание чемпионата мира по футболу и т.п. В формулировке цели участвуют предметы и понятия реального мира, имеющие отношение к создаваемой системе (см. рис 2.2) При объектно-ориентированном подходе эти предметы и понятия заменяются моделями, т.е. определенными формальными конструкциями.


Рис. 2.2.Семантика (смысл программы с точки зрения выполняющего ее компьютера) и прагматика (смысл программы с точки зрения ее пользователей) [3].

Модель содержит не все признаки и свойства представляемого ею предмета или понятия, а только те, которые существенны для разрабатываемой программной системы. Таким образом, модель "беднее", а следовательно, проще представляемого ею предмета или понятия.

Простота модели по отношению к реальному предмету позволяет сделать ее формальной. Благодаря такому характеру моделей при разработке можно четко выделить все зависимости и операции над ними в создаваемой программной системе. Это упрощает как разработку и изучение (анализ) моделей, так и их реализацию на компьютере.

Объектно-ориентированный подход обладает такими преимуществами, как:

  • уменьшение сложности программного обеспечения;
  • повышение надежности программного обеспечения;
  • обеспечение возможности модификации отдельных компонентов программного обеспечения без изменения остальных его компонентов;
  • обеспечение возможности повторного использования отдельных компонентов программного обеспечения.

Более детально преимущества и недостатки объектно-ориентированного программирования будут рассмотрены в конце лекции, так как для их понимания необходимо знание основных понятий и положений ООП.

Систематическое применение объектно-ориентированного подхода позволяет разрабатывать хорошо структурированные, надежные в эксплуатации, достаточно просто модифицируемые программные системы. Этим объясняется интерес программистов к объектно-ориентированному подходу и объектно-ориентированным языкам программирования. ООП является одним из наиболее интенсивно развивающихся направлений теоретического и прикладного программирования.

Объекты

По определению будем называть объектом понятие, абстракцию или любой предмет с четко очерченными границами, имеющий смысл в контексте рассматриваемой прикладной проблемы. Введение объектов преследует две цели:

  • понимание прикладной задачи (проблемы);
  • введение основы для реализации на компьютере.

Примеры объектов: форточка, Банк "Империал", Петр Сидоров, дело № 7461, сберкнижка и т.д.

Каждый объект имеет определенное время жизни. В процессе выполнения программы, или функционирования какой-либо реальной системы, могут создаваться новые объекты и уничтожаться уже существующие.

Гради Буч дает следующее определение объекта:

Объект - это мыслимая или реальная сущность, обладающая характерным поведением и отличительными характеристиками и являющаяся важной в предметной области [2].

Каждый объект имеет состояние, обладает четко определенным поведением и уникальной идентичностью.

Состояние

Рассмотрим пример. Любой человек может находиться в некотором положении (состоянии): стоять, сидеть, лежать, и - в то же время совершать какие-либо действия.

Например, человек может прыгать, если он стоит, и не может - если он лежит, для этого ему потребуется сначала встать. Также в объектно-ориентированном программировании состояние объекта может определяться наличием или отсутствием связей между моделируемым объектом и другими объектами. Более подробно все возможные связи между объектами будут рассмотрены в разделе "Типы отношений между классами ".

Например, если у человека есть удочка (у него есть связь с объектом "Удочка"), он может ловить рыбу, а если удочки нет, то такое действие невозможно. Из этих примеров видно, что набор действий, которые может совершать человек, зависит от параметров объекта, его моделирующего.

Для рассмотренных выше примеров такими характеристиками, или атрибутами, объекта "Человек" являются:

  • текущее положение человека (стоит, сидит, лежит);
  • наличие удочки (есть или нет).

В конкретной задаче могут появиться и другие свойства, например, физическое состояние, здоровье (больной человек обычно не прыгает).

Состояние (state) - совокупный результат поведения объекта: одно из стабильных условий, в которых объект может существовать, охарактеризованных количественно; в любой момент времени состояние объекта включает в себя перечень (обычно статический) свойств объекта и текущие значения (обычно динамические) этих свойств [2].

Поведение

Для каждого объекта существует определенный набор действий, которые с ним можно произвести. Например, возможные действия с некоторым файлом операционной системы ПК:

  • создать;
  • открыть;
  • читать из файла;
  • писать в файл;
  • закрыть;
  • удалить.

Результат выполнения действий зависит от состояния объекта на момент совершения действия, т.е. нельзя, например, удалить файл, если он открыт кем-либо (заблокирован). В то же время действия могут менять внутреннее состояние объекта - при открытии или закрытии файла свойство "открыт" принимает значения "да" или "нет", соответственно.

Программа, написанная с использованием ООП, обычно состоит из множества объектов, и все эти объекты взаимодействуют между собой. Обычно говорят, что взаимодействие между объектами в программе происходит посредством передачи сообщений между ними.

В терминологии объектно-ориентированного подхода понятия "действие", "сообщение" и "метод" являются синонимами. Т.е. выражения "выполнить действие над объектом ", "вызвать метод объекта " и "послать сообщение объекту для выполнения какого-либо действия" эквивалентны. Последняя фраза появилась из следующей модели. Программу, построенную по технологии ООП, можно представить себе как виртуальное пространство, заполненное объектами, которые условно "живут" некоторой жизнью. Их активность проявляется в том, что они вызывают друг у друга методы, или посылают друг другу сообщения. Внешний интерфейс объекта, или набор его методов,- это описание того, какие сообщения он может принимать.

Поведение (behavior) - действия и реакции объекта, выраженные в терминах передачи сообщений и изменения состояния ; видимая извне и воспроизводимая активность объекта [].

Уникальность

Уникальность - это то, что отличает объект от других объектов. Например, у вас может быть несколько одинаковых монет. Даже если абсолютно все их свойства (атрибуты) одинаковы (год выпуска, номинал и т.д.) и при этом вы можете использовать их независимо друг от друга, они по-прежнему остаются разными монетами.

В машинном представлении под параметром уникальности объекта чаще всего понимается адрес размещения объекта в памяти.

Identity ( уникальность ) объекта состоит в том, что всегда можно определить, указывают две ссылки на один и тот же объект или на разные объекты. При этом два объекта могут во всем быть похожими, их образ в памяти может представляться одинаковыми последовательностями байтов, но, тем не менее, их Identity может быть различна.

Наиболее распространенной ошибкой является понимание уникальности как имени ссылки на объект. Это неверно, т.к. на один объект может указывать несколько ссылок, и ссылки могут менять свои значения (ссылаться на другие объекты).

Итак, уникальность (identity) - свойство объекта; то, что отличает его от других объектов (автор не согласен с переводом русского издания [поэтому здесь приводится авторский перевод).

Классы

Все монеты из предыдущего примера принадлежат одному и тому же классу объектов (именно с этим связана их одинаковость). Номинальная стоимость монеты, металл, из которого она изготовлена, форма - это атрибуты класса. Совокупность атрибутов и их значений характеризует объект. Наряду с термином "атрибут" часто используют термины "свойство" и "поле", которые в объектно-ориентированном программировании являются синонимами.

Все объекты одного и того же класса описываются одинаковыми наборами атрибутов. Однако объединение объектов в классы определяется не наборами атрибутов, а семантикой. Так, например, объекты "конюшня" и "лошадь" могут иметь одинаковые атрибуты: цена и возраст. При этом они могут относиться к одному классу, если рассматриваются в задаче просто как товар, либо к разным классам, если в рамках поставленной задачи будут использоваться по-разному, т.е. над ними будут совершаться различные действия.

Объединение объектов в классы позволяет рассмотреть задачу в более общей постановке. Класс имеет имя (например, "лошадь"), которое относится ко всем объектам этого класса. Кроме того, в классе вводятся имена атрибутов, которые определены для объектов. В этом смысле описание класса аналогично описанию типа структуры или записи (record), широко применяющихся в процедурном программировании; при этом каждый объект имеет тот же смысл, что и экземпляр структуры (переменная или константа соответствующего типа).

Формально класс - это шаблон поведения объектов определенного типа с заданными параметрами, определяющими состояние. Все экземпляры одного класса ( объекты, порожденные от одного класса ) имеют один и тот же набор свойств и общее поведение, то есть одинаково реагируют на одинаковые сообщения.

 

В соответствии с UML (Unified Modelling Language - унифицированный язык моделирования), класс имеет следующее графическое представление.

Класс изображается в виде прямоугольника, состоящего из трех частей. В верхней части помещается название класса, в средней - свойства объектов класса, в нижней - действия, которые можно выполнять с объектами данного класса (методы).

Каждый класс также может иметь специальные методы, которые автоматически вызываются при создании и уничтожении объектов этого класса:

  • конструктор (constructor) - выполняется при создании объектов ;
  • деструктор (destructor) - выполняется при уничтожении объектов.

Обычно конструктор и деструктор имеют специальный синтаксис, который может отличаться от синтаксиса, используемого для написания обычных методов класса.

Инкапсуляция

Инкапсуляция (encapsulation) - это сокрытие реализации класса и отделение его внутреннего представления от внешнего (интерфейса). При использовании объектно-ориентированного подхода не принято применять прямой доступ к свойствам какого-либо класса из методов других классов. Для доступа к свойствам класса принято задействовать специальные методы этого класса для получения и изменения его свойств.

Внутри объекта данные и методы могут обладать различной степенью открытости (или доступности). Степени доступности, принятые в языке Java, подробно будут рассмотрены в лекции 6. Они позволяют более тонко управлять свойством инкапсуляции.

Открытые члены класса составляют внешний интерфейс объекта. Это та функциональность, которая доступна другим классам. Закрытыми обычно объявляются все свойства класса, а также вспомогательные методы, которые являются деталями реализации и от которых не должны зависеть другие части системы.

Благодаря сокрытию реализации за внешним интерфейсом класса можно менять внутреннюю логику отдельного класса, не меняя код остальных компонентов системы. Это свойство называется модульность.

Обеспечение доступа к свойствам класса только через его методы также дает ряд преимуществ. Во-первых, так гораздо проще контролировать корректные значения полей, ведь прямое обращение к свойствам отслеживать невозможно, а значит, им могут присвоить некорректные значения.

Во-вторых, не составит труда изменить способ хранения данных. Если информация станет храниться не в памяти, а в долговременном хранилище, таком как файловая система или база данных, потребуется изменить лишь ряд методов одного класса, а не вводить эту функциональность во все части системы.

Наконец, программный код, написанный с использованием данного принципа, легче отлаживать. Для того чтобы узнать, кто и когда изменил свойство интересующего нас объекта, достаточно добавить вывод отладочной информации в тот метод объекта, посредством которого осуществляется доступ к свойству этого объекта. При использовании прямого доступа к свойствам объектов программисту пришлось бы добавлять вывод отладочной информации во все участки кода, где используется интересующий нас объект.

Наследование

Наследование (inheritance) - это отношение между классами, при котором класс использует структуру или поведение другого класса (одиночное наследование ), или других (множественное наследование ) классов. Наследование вводит иерархию "общее/частное", в которой подкласс наследует от одного или нескольких более общих суперклассов. Подклассы обычно дополняют или переопределяют унаследованную структуру и поведение.

В качестве примера можно рассмотреть задачу, в которой необходимо реализовать классы "Легковой автомобиль" и "Грузовой автомобиль". Очевидно, эти два класса имеют общую функциональность. Так, оба они имеют 4 колеса, двигатель, могут перемещаться и т.д. Всеми этими свойствами обладает любой автомобиль, независимо от того, грузовой он или легковой, 5- или 12-местный. Разумно вынести эти общие свойства и функциональность в отдельный класс, например, "Автомобиль" и наследовать от него классы "Легковой автомобиль" и "Грузовой автомобиль", чтобы избежать повторного написания одного и того же кода в разных классах.

 

Отношение обобщения обозначается сплошной линией с треугольной стрелкой на конце. Стрелка указывает на более общий класс ( класс-предок или суперкласс ), а ее отсутствие - на более специальный класс ( класс-потомок или подкласс ).

Использование наследования способствует уменьшению количества кода, созданного для описания схожих сущностей, а также способствует написанию более эффективного и гибкого кода.

В рассмотренном примере применено одиночное наследование. Некоторый класс также может наследовать свойства и поведение сразу нескольких классов. Наиболее популярным примером применения множественного наследования является проектирование системы учета товаров в зоомагазине.

Все животные в зоомагазине являются наследниками класса "Животное", а также наследниками класса "Товар". Т.е. все они имеют возраст, нуждаются в пище и воде и в то же время имеют цену и могут быть проданы.

Множественное наследование на диаграмме изображается точно так же, как одиночное, за исключением того, что линии наследования соединяют класс-потомок сразу с несколькими суперклассами.

Не все объектно-ориентированные языки программирования содержат языковые конструкции для описания множественного наследования.

В языке Java множественное наследование имеет ограниченную поддержку через интерфейсы и будет рассмотрено в лекции 8.

Полиморфизм

Полиморфизм является одним из фундаментальных понятий в объектно-ориентированном программировании наряду с наследованием и инкапсуляцией. Слово " полиморфизм " греческого происхождения и означает "имеющий много форм". Чтобы понять, что оно означает применительно к объектно-ориентированному программированию, рассмотрим пример.

Предположим, мы хотим создать векторный графический редактор, в котором нам нужно описать в виде классов набор графических примитивов - Point, Line, Circle, Box и т.д. У каждого из этих классов определим метод draw для отображения соответствующего примитива на экране.

Очевидно, придется написать код, который при необходимости отобразить рисунок будет последовательно перебирать все примитивы, на момент отрисовки находящиеся на экране, и вызывать метод draw у каждого из них. Человек, не знакомый с полиморфизмом, вероятнее всего, создаст несколько массивов (отдельный массив для каждого типа примитивов) и напишет код, который последовательно переберет элементы из каждого массива и вызовет у каждого элемента метод draw. В результате получится примерно следующий код:

...//создание пустого массива, который может // содержать объекты Point с максимальным // объемом 1000 Point[] p = new Point[1000]; Line[] l = new Line[1000];Circle[] c = new Circle[1000];Box[] b = new Box[1000];...// предположим, в этом месте происходит // заполнение всех массивов соответствующими// объектами...for(int i = 0; i < p.length;i++) { //цикл с перебором всех ячеек массива. //вызов метода draw() в случае, // если ячейка не пустая. if(p[i]!=null) p[i].draw();} for(int i = 0; i < l.length;i++) { if(l[i]!=null) l[i].draw();} for(int i = 0; i < c.length;i++) { if(c[i]!=null) c[i].draw();} for(int i = 0; i < b.length;i++) { if(b[i]!=null) b[i].draw();}...

Недостатком написанного выше кода является дублирование практически идентичного кода для отображения каждого типа примитивов. Также неудобно то, что при дальнейшей модернизации нашего графического редактора и добавлении возможности рисовать новые типы графических примитивов, например Text, Star и т.д., при таком подходе придется менять существующий код и добавлять в него определения новых массивов, а также обработку содержащихся в них элементов.

Используя полиморфизм, мы можем значительно упростить реализацию подобной функциональности. Прежде всего, создадим общий родительский класс для всех наших классов. Пусть таким классом будет Point. В результате получим иерархию классов, которая изображена на рис 2.3. У каждого из дочерних классов метод draw переопределен таким образом, чтобы отображать экземпляры каждого класса соответствующим образом.

Для описанной выше иерархии классов, используя полиморфизм, можно написать следующий код:

...Point p[] = new Point[1000];p[0] = new Circle();p[1] = new Point();p[2] = new Box();p[3] = new Line();...for(int i = 0; i < p.length;i++) { if(p[i]!=null) p[i].draw();}...

В описанном выше примере массив p[] может содержать любые объекты, порожденные от наследников класса Point. При вызове какого-либо метода у любого из элементов этого массива будет выполнен метод того объекта, который содержится в ячейке массива. Например, если в ячейке p[0] находится объект Circle, то при вызове метода draw следующим образом:

p[0].draw()

нарисуется круг, а не точка.

В заключение приведем формальное определение полиморфизма.

Полиморфизм (polymorphism) - положение теории типов, согласно которому имена (например, переменных) могут обозначать объекты разных (но имеющих общего родителя) классов. Следовательно, любой объект, обозначаемый полиморфным именем, может по-своему реагировать на некий общий набор операций

В процедурном программировании тоже существует понятие полиморфизма, которое отличается от рассмотренного механизма в ООП. Процедурный полиморфизм предполагает возможность создания нескольких процедур или функций с одним и тем же именем, но разным количеством или различными типами передаваемых параметров. Такие одноименные функции называются перегруженными, а само явление - перегрузкой ( overloading ). Перегрузка функций существует и в ООП и называется перегрузкой методов.


Рис. 2.3.Пример иерархии классов.

Примером использования перегрузки методов в языке Java может служить класс PrintWriter, который применяется, в частности, для вывода сообщений на консоль. Этот класс имеет множество методов println, которые различаются типами и/или количеством входных параметров. Вот лишь несколько из них:

void println() // переход на новую строкуvoid println(boolean x) // выводит значение булевской // переменной (true или false)void println(String x) // выводит строку - значение // текстового параметра.

Определенные сложности возникают при вызове перегруженных методов. В Java существуют специальные правила, которые позволяют решать эту проблему. Они будут рассмотрены в соответствующей лекции.








Дата добавления: 2016-03-22; просмотров: 982;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.019 сек.