Aerodynamics and Birds
Birds have provided humans with much information about heavier-than-air vehicle design. About 8,800 species of birds make up most living organisms capable of flight.
Most birds, however, fly well, and humans learned a lot about heavier-than-air vehicle design from observing them. Birds differ from heavier-than-air aircraft primarily in that their wings are movable, or flappable. Most aircraft have fixed wings, which do not move.
Birds’ bodies are specially engineered for flight. Their skeletons are light, often weighing less than their feathers. Feathers combine the qualities of lightness, strength, and flexibility; a feather, bent double, quickly regains its shape upon release. Made of keratin, feathers also keep birds warm, dry, and protected from injury.
Bird lungs and hearts are designed for the high metabolic rates needed to produce the huge amounts of energy required by all flying machines, biologic or manufactured.
To understand flight requirements, a background in aerodynamics, a branch of fluid dynamics that studies movement of bodies, such as birds or aircraft, through gases such as air, is essential. For example, the fifteenth century Italian artist and engineer Leonardo da Vinci studied bird flight and proposed to enable human beings to fly with flappable wings. His ideas failed because da Vinci knew nothing about aerodynamics, a science which did not exist then.
Any heavier-than-air flying vehicle must conquer gravity before it can climb into the air in controlled flight. Three main forces, exclusive of weight, are involved. The first is thrust, which birds produce by flapping their wings. Flapping merely enables a bird to move forward as long as its design allows enough thrust to exceed the drag caused by the viscosity of the air through which the bird moves. Drag diminishes the speed of moving objects due to air resistance. In vehicle design, thrust-to-drag ratios can be increased by streamlining to minimize drag. The third aerodynamic force, lift, is the key to flight. Lift, enabling an object’s rise into the air, operates upward perpendicular to the direction of forward motion, and is supplied in both birds and aircraft by wings and tails (airfoils).
Bird wings are designed so the angle at which they meet air passing them causes it to flow much more rapidly past the upper airfoil surface than past its lower surface.
This design lowers air pressure above the airfoil compared to that under it and engenders the lift that raises a bird into flight. In birds, this unsymmetrical airflow is produced by muscle movement that changes both the positions of wing feathers and the angle at which wings meet the air, known as the angle of attack.
Wing Design and Flight
Birds create lift with down strokes of their wings, attached by flight muscles to a large breastbone. Birds contract flight muscles to cause this down stroke, during which long primary and secondary flight feathers spread out to provide the maximum possible surface area to push against air below. The downstroke is followed by an upstroke in which the feathers fold to minimize air resistance while positioning the wings for the next downstroke. Bird wings have a short upper arm bone that moves up and down during flapping.
There are four basic types of bird flight. In skimming flight, birds such as albatrosses use winds to stay aloft. In soaring flight, birds such as eagles, hawks, and vultures can remain aloft for long periods of time, seeking prey below.
In active flight, birds such as swallows fly all day, flapping their wings continuously. Finally, game birds such as quail conceal themselves and, when endangered, burst into the sky. They pick up speed quickly and fly short distances before landing and hiding again. There is a wing shape most efficient for each flight type. Skimming birds have wings that are long, slender, and ribbon-shaped, with parallel edges and many secondary feathers. Skimming wings are the most highly developed, helping such birds ride the winds. Soaring birds have wings that are large, broad, almost square, and rich in primary feathers. Swallows and other birds engaging in active flight have long, tapering, pointy wings with broad bases and slender tips. Finally, game birds have short wings that beat rapidly, enabling to get to speed quickly. However, these wings are not useful in long flights. No bird has wings designed entirely for one type of flying.
However, in gliding, birds use gravity as thrust to overcome drag and move forward, as their wings produce lift to hold them up. Drag slows down a gliding bird and causes it to sink earthward.
Body Design and Flight
A second group of characteristics enabling bird flight is the design of the bird’s body. Body weight is important to flight: The heavier an object is, the larger its wings need to be to enable liftoff and maintain flight. In birds this problem is met by their relatively small, light bodies. For example, hawks and eagles have cat- or even dog-sized bodies, but they weigh only 25 to 35 percent as much as the earthbound mammals. This special anatomy, combined with wings that engender appropriate amounts of lift, allows birds to fly. Depending on their wing size and shape, birds can fly, soar, or skim.
Energy Needs
To meet the energy needs of flight, birds must eat a relatively large amount of food each day. For their muscles to work well, birds need efficient blood circulation to quickly supply fuel and oxygen and to remove wastes. Bird heartbeat rates are also much faster than those of mammals, usually from 200 to 1,000 beats per minute, compared to 80 in humans. Thus, with its wings; its small, light body; its superbly useful feathers; and its high-capacity heart and lungs, a bird is superbly designed to be airborne.
Дата добавления: 2016-03-15; просмотров: 927;