Понятие сети Интернет

Основы работы в среде локальных и глобальных компьютерных сетей. Основные понятия. Архитектура и топология сетей. Понятие сети Интернет.

В настоящее время необходимо, чтобы скорость обработки информации была высокой, а формы ее хранения и передачи были удобными. Необходимо также иметь динамичные способы обращения к информации, способы поиска данных в заданные временные интервалы; реализовывать сложную математическую и логическую обработку данных. Для решения задач управления, обеспечивающих реализацию экономической стратегии, становятся важными и актуальными скорость и удобство обмена информацией, а также возможность тесного взаимодействия всех участвующих в процессе выработки управленческих решений.

В эпоху централизованного использования ЭВМ с пакетной обработкой информации пользователи вычислительной техники предпочитали приобретать компьютеры, на которых можно было бы решать почти все классы задач. Однако сложность решаемых задач обратно пропорциональна их количеству, и это приводило к неэффективному использованию вычислительной мощности ЭВМ при значительных материальных затратах. Нельзя не учитывать и тот факт, что доступ к ресурсам компьютеров был затруднен из-за существующей политики централизации вычислительных средств в одном месте.

Принцип централизованной обработки данных (рис.10) не отвечал высоким требованиям к надежности процесса обработки, затруднял развитие систем и не мог обеспечить необходимые временные параметры при диалоговой обработке данных в многопользовательском режиме. Кратковременный выход из строя центральной ЭВМ приводил к роковым последствиям для системы в целом, так как приходилось дублировать функции центральной ЭВМ, значительно увеличивая затраты на создание и эксплуатацию систем обработки данных. Основное назначение компьютерных сетей – совместное использование ресурсов и осуществление интерактивной связи как внутри одной организации, так и за ее пределами. Ресурсы – это данные, приложения и периферийные устройства. Понятие интерактивной связи подразумевает обмен сообщениями в реальном режиме времени.

Терминал
Терминал
Центральная ЭВМ (мейнфрейм)
Терминал
Терминал

Рис. 10. Система централизованной обработки данных

Появление малых ЭВМ, микро-ЭВМ и, наконец, персональных компьютеров потребовало нового подхода к организации систем обработки данных, к созданию новых информационных технологий. Возникло логически обоснованное требование перехода и использования отдельных ЭВМ в системах централизованной обработки данных к распределенной обработке данных (рис. 11).

ЭВМ 1
ЭВМ 2
Терминал
Терминал
ЭВМ 3
Терминал
Терминал

Рис. 11. Система распределенной обработки данных

Определение.Распределенная обработка данных — обработка данных, выполняемая на независимых, но связанных между собой компьютерах, представляющих распределенную систему.

Для реализации распределенной обработки данных были созданы многомашинные ассоциации, структура которых разрабатывается по одному из следующих направлений:

■ многомашинные вычислительные комплексы (МВК);

■ компьютерные (вычислительные) сети.

Определение.Многомашинный вычислительный комплекс — группа установленных рядом вычислительных машин, объединенных с помощью специальных средств сопряжения и выполняющих совместно единый информационно-вычислительный процесс.

Примечание. Под процессом понимается некоторая последовательность действий для решения задачи, определяемая программой.

Многомашинные вычислительные комплексы могут быть:

локальными при условии установки компьютеров в одном помещении, не требующих для взаимосвязи специального оборудования и каналов связи;

дистанционными, если некоторые компьютеры комплекса установлены на значительном расстоянии or центральной ЭВМ и для передачи данных используются телефонные каналы связи.

Определение.Компьютерная (вычислительная) сеть — совокупность компьютеров и терминалов, соединенных с помощью каналов связи в единую систему, удовлетворяющую требованиям распределенной обработки данных.

Компьютерные сети являются высшей формой многомашинных ассоциаций. Выделим основные отличия компьютерной сети от многомашинного вычислительного комплекса.

1. Размерность. В состав многомашинного вычислительного комплекса входят обычно две, максимум три ЭВМ, расположенные преимущественно в одном помещении. Вычислительная сеть может состоять из десятков и даже сотен ЭВМ, расположенных на расстоянии друг от друга от нескольких метров до десятков, сотен и даже тысяч километров.

2. Разделение функций между ЭВМ. Если в многомашинном вычислительном комплексе функции обработки данных, передачи данных и управления системой могут быть реализованы в одной ЭВМ, то в вычислительных сетях эти функции определены между различными ЭВМ.

3. Необходимость решения в сети задачи маршрутизации сообщений. Сообщение от одной ЭВМ к другой в сети может быть передано по различным маршрутам в зависимости от состояния каналов связи, соединяющих ЭВМ друг с другом.

Определение.Абоненты сети— объекты, генерирующие или потребляющие информацию в сети (отдельные ЭВМ, комплексы ЭВМ, терминалы, промышленные роботы, станки с числовым программным управлением и т.д.)

Любой абонент сети подключается к станции.

Определение.Станция — аппаратура, которая выполняет функции, связанные с передачей и приемом информации.

Совокупность абонента и станции принято называть абонентской системой. Для организации взаимодействия абонентов необходима физическая передающая среда.

ОпределениеФизическая передающая среда— линии связи или пространство, в котором распространяются электрические сигналы, и аппаратура передачи данных.

Обмен информацией производится по каналам передачи информации, которые могут использовать различные физические принципы. Например, при непосредственном общении людей информация передается с помощью звуковых волн, при разговоре по телефону – с помощью электрических сигналов, которые распространяются по линиям связи. Компьютеры могут обмениваться информацией с использованием каналов связи различной физической природы:

- проводные (воздушные – телефонные кабели);

- кабельные: медные (коаксиальные и витая пара);

- оптоволоконные

- радиоканалы наземной и спутниковой связи.

На базе физической передающей среды строится коммуникационная сеть, которая обеспечивает передачу информации между абонентскими системами.

Такой подход позволяет рассматривать любую компьютерную сеть как совокупность абонентских систем и коммуникационной сети. Обобщенная структура компьютерной сети приведена на рис.12.

Коммуникационная сеть
абонентская система 2
абонентская система 3
абонентская система 4
абонентская система 1

Рис. 12. Обобщенная структура компьютерной сети

Упрощенная схема передачи информации включает в себя отправителя информации, канал передачи информации и получателя информации. При двустороннем обмене отправитель и получатель информации могут меняться местами.

Отправитель информации
Получатель информации
Канал передачи информации

Рис.13. Канал обмена информацией

Назовём задачи, которые трудно или невозможно решить без организации информационной связи между различными компьютерами:

· перенос информации на большие расстояния (сотни, тысячи километров);

· совместное использование несколькими компьютерами дорогостоящих аппаратных, программных или информационных ресурсов — мощного процессора, ёмкого накопителя, высокопроизводительного лазерного принтера, баз данных, программного обеспечения и т.д.;

· перенос информации с одного компьютера на другой;

· совместная работа над большим проектом, когда исполнители должны всегда иметь последние (актуальные) копии общих данных во избежание путаницы, и т.д.

Есть три основных способа организации межкомпьютерной связи:

· объединение двух рядом расположенных компьютеров через их коммуникационные порты посредством специального кабеля;

· передача данных от одного компьютера к другому посредством модема с помощью проводных или спутниковых линий связи;

· объединение компьютеров в компьютерную сеть.

Определение.Компьютерная сеть (англ. Computer NetWork, от net — сеть, и work — работа) — это система обмена информацией между компьютерами, представляющая собой совокупность трех компонент:

· сети передачи данных (включающей в себя каналы передачи данных и средства коммутации);

· компьютеров, взаимосвязанных сетью передачи данных;

· сетевого программного обеспечения.

Пользователи компьютерной сети получают возможность совместно использовать её программные, технические, информационные и организационные ресурсы.

Часто при организации связи между двумя компьютерами за одним компьютером закрепляется роль поставщика ресурсов (программ, данных и т.д.), а за другим — роль пользователя этих ресурсов. В этом случае первый компьютер называется сервером, а второй — клиентом или рабочей станцией. Работать можно только на компьютере-клиенте под управлением специального программного обеспечения.

Определение.Сервер (англ. serve — обслуживать) — это высокопроизводительный компьютер с большим объёмом внешней памяти, который обеспечивает обслуживание других компьютеров путем управления распределением дорогостоящих ресурсов совместного пользования (программ, данных и периферийного оборудования).

Определение. Клиент(иначе, рабочая станция) — любой компьютер, имеющий доступ к услугам сервера.

Например, сервером может быть мощный компьютер, на котором размещается центральная база данных, а клиентом — обычный компьютер, программы которого по мере необходимости запрашивают данные с сервера. В некоторых случаях компьютер может быть одновременно и клиентом, и сервером. Это значит, что он может предоставлять свои ресурсы и хранимые данные другим компьютерам и одновременно использовать их ресурсы и данные.

Клиентом также называют прикладную программу, которая от имени пользователя получает услуги сервера. Соответственно, программное обеспечение, которое позволяет компьютеру предоставлять услуги другому компьютеру, называют сервером — так же, как и сам компьютер.

Для преодоления несовместимости интерфейсов отдельных компьютеров вырабатывают специальные стандарты, называемые протоколами коммуникации.

Определение.Протокол коммуникации — это согласованный набор конкретных правил обмена информацией между разными устройствами передачи данных. Имеются протоколы для скорости передачи, форматов данных, контроля ошибок и др.

Контрольная сумма данных пакета содержит информацию, необходимую для контроля ошибок. Первый раз она вычисляется передающим компьютером. После того, как пакет будет передан, контрольная сумма повторно вычисляется принимающим компьютером. Если значения не совпадают, это означает, что данные пакета были повреждены при передаче. Такой пакет отбрасывается, и автоматически направляется запрос повторно передать пакет.

При установлении связи устройства обмениваются сигналами для согласования коммуникационных каналов и протоколов. Этот процесс называется подтверждением установления связи (англ. HandShake — рукопожатие).

Для работы с сетью необходимо наличие специального сетевого программного обеспечения, которое обеспечивает передачу данных в соответствии с заданным протоколом.

Протоколы коммуникации предписывают разбить весь объём передаваемых данных на пакеты — отдельные блоки фиксированного размера. Пакеты нумеруются, чтобы их затем можно было собрать в правильной последовательности. К данным, содержащимся в пакете, добавляется дополнительная информация примерно такого формата:

Адрес получателя Адрес отправителя Длина Данные Поле контрольной суммы

Вычислительные сети подразделяют на 3 класса: локальные вычислительные сети (Local Area Networks), глобальные вычислительные сети (Wide Area Networks), региональные вычислительные сети (Metropolitan Area Networks).

Локальные вычислительные сети (LAN – Local Area Networks, ЛВС) объединяют компьютеры, расположенные на весьма ограниченном пространстве. Это связано с тем, что при прохождении сигнала по кабелю, сигнал затухает. Отсюда максимальная длина кабеля порядка 2 – 2,5 км. В этом случае все компьютеры расположены, как правило, в одном здании или в рядом расположенных зданиях. В ЛВС используются, как правило, коаксиальные кабели, витая пара, реже - оптоволоконные кабели. Скорость передачи данных по таким каналам связи около 100 Мбит/сек.

Локальная сеть выполняет следующие функции:

1) совместное использование данных;

2) обмен данными, например, электронную почту — отправку сообщений в сети указанным адресатам. Электронная почта изначально появилась в локальных сетях; с развитием глобальных сетей глобальная электронная почта заняла лидирующее положение;

3) совместное использование программ;

4) совместное использование модемов, принтеров и других устройств.

Глобальные вычислительные сети (WAN – Wide Area Networks, ГВС) объединяют ресурсы компьютеров, расположенных на значительном удалении (другие города, страны и даже континенты). В этом случае простым кабельным соединением, каким можно было бы обойтись в ЛВС, не обойтись. Приходится добавлять в межкомпьютерные соединения специальные устройства, позволяющие передавать данные без искажения и по назначению. Эти устройства коммутируют (соединяют, переключают) между собой компьютеры сети и в зависимости от ее конфигурации могут быть как пассивными коммутаторами, так и достаточно мощными ЭВМ, выполняющими логические функции выбора наименьших маршрутов передачи данных (маршрутизаторы). В качестве линий передачи данных в ГВС используются телефонные и телеграфные каналы связи, радиоканалы спутниковой связи. В таких линиях скорость передачи данных не велика – порядка десятков, сотен Кбит/с, к тому же приходится решать проблему восстановления данных, т.к. при передаче по таким линиям связи сигнал, как правило, искажается. Глобальная сеть объединяет локальные сети.

В последнее время появилось такое понятие, как региональные вычислительные сети (MAN – Metropolitan Area Networks)(другими словами городские сети или сети мегаполисов). Они предназначены для обслуживания территории крупного города. Эти сети используют цифровые магистральные линии связи, чаще всего это оптоволоконные линии, со скоростью передачи данных от 45 Мбит/с, и предназначенные для связи ЛВС в масштабах города или соединения локальных и глобальных сетей. Сейчас эти сети помимо передачи данных поддерживают и такие услуги, как видеоконференции и интегральную передачу голоса и текста. Т.к. эти сети являются общественными (на основе телефонных линий), то их услуги гораздо дешевле, чем построение собственных (частных) сетей в пределах города.

Отдельные локальные и глобальные сети могут объединяться, и тогда возникает сложная сеть, которую называют распределенной сетью.

Рис.14. Общая схема иерархии компьютерных сетей

Для соединения локальных сетей используются следующие устройства, которые различаются между собой по назначению и возможностям:

·Мост (англ. Bridge) — связывает две локальные сети. Передаёт данные между сетями в пакетном виде, не производя в них никаких изменений. Ниже на рисунке показаны три локальные сети, соединённые двумя мостами.

Мосты могут фильтровать пакеты, охраняя всю сеть от локальных потоков данных и пропуская наружу только те данные, которые предназначены для других сегментов сети.

·Маршрутизатор (англ. Router) объединяет сети с общим протоколом более эффективно, чем мост. Он позволяет, например, расщеплять большие сообщения на более мелкие куски, обеспечивая тем самым взаимодействие локальных сетей с разным размером пакета.

Маршрутизатор может пересылать пакеты на конкретный адрес (мосты только отфильтровывают ненужные пакеты), выбирать лучший путь для прохождения пакета и многое другое. Чем сложней и больше сеть, тем больше выгода от использования маршрутизаторов.

·Мостовой маршрутизатор (англ. Brouter) — это гибрид моста и маршрутизатора, который сначала пытается выполнить маршрутизацию, где это только возможно, а затем, в случае неудачи, переходит в режим моста.

·Шлюз (англ. GateWay), в отличие от моста, применяется в случаях, когда соединяемые сети имеют различные сетевые протоколы. Поступившее в шлюз сообщение от одной сети преобразуется в другое сообщение, соответствующее требованиям следующей сети. Таким образом, шлюзы не просто соединяют сети, а позволяют им работать как единая сеть. C помощью шлюзов также локальные сети подсоединяются к мэйнфреймам — универсальным мощным компьютерам.

Для соединения устройств сети используется специальное оборудование:

· Сетевые кабели (коаксиальные, состоящие из двух изолированных между собой концентрических проводников, из которых внешний имеет вид трубки; оптоволоконные; кабели на витых парах, образованные двумя переплетёнными друг с другом проводами, и др.).

· Коннекторы (соединители) для подключения кабелей к компьютеру; разъёмы для соединения отрезков кабеля.

· Сетевые интерфейсные адаптеры для приёма и передачи данных. В соответствии с определённым протоколом управляют доступом к среде передачи данных. Размещаются в системных блоках компьютеров, подключенных к сети. К разъёмам адаптеров подключается сетевой кабель.

· Трансиверы повышают уровень качества передачи данных по кабелю, отвечают за приём сигналов из сети и обнаружение конфликтов.

· Хабы (концентраторы) и коммутирующие хабы (коммутаторы) расширяют топологические, функциональные и скоростные возможности компьютерных сетей. Хаб с набором разнотипных портов позволяет объединять сегменты сетей с различными кабельными системами. К порту хаба можно подключать как отдельный узел сети, так и другой хаб или сегмент кабеля.

· Повторители (репитеры) усиливают сигналы, передаваемые по кабелю при его большой длине.

Беспроводные сети используются там, где прокладка кабелей затруднена, нецелесообразна или просто невозможна. Например, в исторических зданиях, промышленных помещениях с металлическим или железобетонным полом, в офисах, полученных в краткосрочную аренду, на складах, выставках, конференциях и т.п.

Для связи между беспроводной и кабельной частями сети используется специальное устройство, называемое точкой входа (или радиомостом). Можно использовать и обычный компьютер, в котором установлены два сетевых адаптера — беспроводной и кабельный.

Другой важной областью применения беспроводных сетей является организация связи между удалёнными сегментами локальных сетей при отсутствии инфраструктуры передачи данных (кабельных сетей общего доступа, высококачественных телефонных линий и др.), что типично для нашей страны. В этом случае для наведения беспроводных мостов между двумя удалёнными сегментами используются радиомосты с антенной направленного типа.

Если в сеть нужно объединить несколько сегментов, то используется топология типа “звезда”. При этом в центральном узле устанавливается всенаправленная антенна, а удалённых узлахнаправленные. Сети звездообразной топологии могут образовывать сети разнообразной конфигурации.

Сетевая магистраль с беспроводным доступом позволяет отказаться от использования медленных модемов.

Итак, компьютерная сеть представляет собой совокупность узлов (компьютеров, рабочих станций и др.) и соединяющих их ветвей.

Определение.Ветвь сети — это путь, соединяющий два смежных узла.

Узлы сети бывают трёх типов:

· оконечный узел — расположен в конце только одной ветви;

· промежуточный узел — расположен на концах более чем одной ветви;

· смежный узел — такие узлы соединены по крайней мере одним путём, не содержащим никаких других узлов.

Компьютеры могут объединяться в сеть разными способами.

Определение. Способ соединения компьютеров в сеть называется её топологией.

Наиболее распространенные виды топологий сетей:

1. Линейная сеть. Содержит только два оконечных узла, любое число промежуточных узлов и имеет только один путь между любыми двумя узлами.

2. Кольцевая сеть. Сеть, в которой к каждому узлу присоединены две и только две ветви.

3. Древовидная сеть. Сеть, которая содержит более двух оконечных узлов и по крайней мере два промежуточных узла, и в которой между двумя узлами имеется только один путь.

4. Звездообразная сеть. Сеть, в которой имеется только один промежуточный узел.

5. Ячеистая сеть. Сеть, которая содержит по крайней мере два узла, имеющих два или более пути между ними.

Определение.Полносвязанная сетьсеть, в которой имеется ветвь между любыми двумя узлами.

Важнейшая характеристика компьютерной сети — её архитектура.

Определение.Архитектура сети — это реализованная структура сети передачи данных, определяющая её топологию, состав устройств и правила их взаимодействия в сети. В рамках архитектуры сети рассматриваются вопросы кодирования информации, её адресации и передачи, управления потоком сообщений, контроля ошибок и анализа работы сети в аварийных ситуациях и при ухудшении характеристик.

Наиболее распространённые архитектуры:

· Ethernet (англ. ether — эфир) — широковещательная сеть. Это значит, что все станции сети могут принимать все сообщения. Топология — линейная или звездообразная. Скорость передачи данных 10 или 100 Мбит/сек.

· Arcnet (Attached Resource Computer Network — компьютерная сеть соединённых ресурсов) — широковещательная сеть. Физическая топология — дерево. Скорость передачи данных 2,5 Мбит/сек.

· Token Ring (эстафетная кольцевая сеть, сеть с передачей маркера) — кольцевая сеть, в которой принцип передачи данных основан на том, что каждый узел кольца ожидает прибытия некоторой короткой уникальной последовательности битов — маркера — из смежного предыдущего узла. Поступление маркера указывает на то, что можно передавать сообщение из данного узла дальше по ходу потока. Скорость передачи данных 4 или 16 Мбит/сек.

· FDDI (Fiber Distributed Data Interface) — сетевая архитектура высокоскоростной передачи данных по оптоволоконным линиям. Скорость передачи — 100 Мбит/сек. Топология — двойное кольцо или смешанная (с включением звездообразных или древовидных подсетей). Максимальное количество станций в сети — 1000. Очень высокая стоимость оборудования.

· АТМ (Asynchronous Transfer Mode) — перспективная, пока ещё очень дорогая архитектура, обеспечивает передачу цифровых данных, видеоинформации и голоса по одним и тем же линиям. Скорость передачи до 2,5 Гбит/сек. Линии связи оптические.

Понятие сети Интернет

Определение. Интернет (англ. Internet — между сетей) — гигантская всемирная компьютерная сеть, объединяющая десятки тысяч сетей всего мира. Её назначение — обеспечить любому желающему постоянный доступ к любой информации. Интернет предлагает практически неограниченные информационные ресурсы, полезные сведения, учёбу, развлечения, возможность общения с компетентными людьми, услуги удалённого доступа, передачи файлов, электронной почты и многое другое. Интернет обеспечивает принципиально новый способ общения людей, не имеющий аналогов в мире.

Благодаря сети стал доступен (бесплатно или за умеренную плату) огромный объём информации. Так, пользователь в любой стране может связаться с людьми, разделяющими его интересы, или получить ценные сведения в электронных библиотеках, даже если они находятся на другом конце света.

Нужная информация окажется в его компьютере за считанные секунды, пройдя путь по длинной цепочке промежуточных компьютеров, по кабелям и по радио, через горы и моря, по дну океана и через спутник.

Интернет финансируется правительствами, научными и образовательными учреждениями, коммерческими структурами и миллионами частных лиц во всех частях света, но никто конкретно не является её владельцем. Управляет сетью “Совет по архитектуре Интернет”, формируемый из приглашённых добровольцев.

Рассмотрим краткую историю сети Интернет. Ранние эксперименты по передаче и приему информации с помощью компьютеров начались еще в 50-х годах прошлого века и имели лабораторный характер. В США решение о создании первой глобальной сети национального масштаба было принято в 1958г. Оно стало реакцией на запуск в СССР первого искусственного спутника Земли.

Поводом для создания глобальной компьютерной сети стала разработка Пентагоном глобальной системы раннего оповещения о пусках ракет (NORAD —North American Aerospace Defence Command). Станции системы NORAD протянулись через север Канады от Аляски до Гренландии, а подземный командный центр расположился вблизи города Колорадо-Спрингс в недрах горы Шайенн. Центр управления был введен в действие в 1964 г., и, собственно, с этого времени можно говорить о работе первой глобальной компьютерной сети, хотя и ведомственной. С середины 60-х годов к ней стали подключаться авиационные, метеорологические и другие военные и гражданские службы.

Курированием работы сети занималась специальная организация — Управление перспективных разработок министерства обороны США (DАRРА —Defense Advanced Research Project Agепсу). Основным недостатком централизованной сети была недостаточная устойчивость, связанная с тем, что при выходе из строя какого-либо из узлов полностью выходил из строя и весь сектор, находившийся за ним, а при выходе из строя центра управления выходила из строя вся сеть. Во времена ядерного противостояния сверхдержав этот недостаток был критичным.

Решение проблемы устойчивости и надежности сети было поручено управлению DАRРА. Основными направлениями исследований стали поиск новых протоколов обслуживания сети и новых принципов сетевой архитектуры. Полигоном для испытаний новых принципов стали крупнейшие университетские и научные центры США, между которыми были проложены линии компьютерной связи. Со стороны министерства обороны работы курировались тем же управлением DАRРА, и первая вневедомственная национальная компьютерная сеть получила название АRРАNEТ. Ее внедрение состоялось в 1969 г.

В 70-е годы сеть АRРАNEТ медленно развивалась. В основном развитие происходило за счет подключения региональных сетей, воссоздающих общую архитектуру АRРАNEТ на более низком уровне (в региональном или локальном масштабе). Основной объявленной задачей АRРАNEТ стала координация групп коллективов, работающих над едиными научно-техническими проектами, а основным назначением стал обмен электронной почтой и файлами с научной и проектно-конструкторской документацией. В то же время не прекращались работы над основной необъявленной задачей — разработкой новых сетевых протоколов, способных обеспечить живучесть глобальной сети даже в ядерном конфликте.

Всякий раз, когда мы говорим о вычислительной технике, нам надо иметь в виду принцип единства аппаратного и программного обеспечения. Пока глобальное расширение АRРАNEТ происходило за счет механического подключения все новых и новых аппаратных средств (узлов и сетей), до Интернета в современном понимании этого слова было еще очень далеко.

Второй датой рождения Интернета принято считать 1983 г. В этом году произошли революционные изменения в программном обеспечении компьютерной связи. Проблема устойчивости глобальной сети была решена внедрением протокола ТСР/IР, лежащего в основе всемирной сети по нынешний день. Решив, наконец, эту задачу, управление DАRРА прекратило свое участие в проекте и передало управление сетью Национальному научному фонду (NSF), который в США выполняет роль нашей Академии наук. Так в 1983 г. образовалась глобальная сеть NSFNET. В середине 80-х к ней начали активно подключаться академические и научные сети других стран, например академическая сеть Великобритании.

Годы, когда глобальной сетью руководил Национальный научный фонд США, вошли в историю как эпоха решительной борьбы с попытками коммерциализации сети. Сеть финансировалась на правительственные средства. Национальный научный фонд распределял их между узлами и материально наказывал тех, кто пытался иметь от сети побочные доходы. В то же время, развитие сети после внедрения протокола ТСР/IР значительно ускорилось, NSF уже не успевал отслеживатьдеятельность каждого узла, а с подключением иностранных секторов его роль стала чисто символической.

Во второй половине 80-х годов произошло деление всемирной сети на домены по принципу принадлежности. В это же время Национальный научный фонд США утратил контроль за развитием сети. Тогда и появилось понятие Интернета как саморазвивающейся децентрализованной иерархической структуры. Если во времена АRРАNEТ и NSFNET сеть финансировалась сверху вниз, то теперь она финансируется от периферии, снизу вверх — от конечных пользователей к владельцам опорных сетей.








Дата добавления: 2016-03-15; просмотров: 2240;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.051 сек.