Слияние протопластов (парасексуальная гибридизация)
Изолированные протопласты, еще не образовавшие клеточной стенки, могут сливаться между собой. Слияние протопластов – своеобразный метод гибридизации, так называемая парасексуальная, или соматическая гибридизация. В отличие от обычной, где сливаются половые клетки (гаметы), в качестве родительских при парасексуальной гибридизации используются диплоидные клетки растений. Внеядерные генетические детерминанты у большинства высших растений наследуются в половом процессе строго одноядерно и матерински.
Техника парасексуальной гибридизации может позволить:
· скрещивание филогенетически отдаленных видов растений (организмов),
· получение асимметричных гибридов, несущих генный набор одного из родителей наряду с несколькими хромосомами, органеллами или цитоплазмой другого,
· слияние трех и более клеток,
· получение гибридов, представляющих сумму генотипов родителей,
· перевод мутаций в гетерозиготное состояние, что позволяет получать жизнеспособные формы при слиянии протопластов, поскольку мутагенез довольно часто дает дефектное по морфогенезу растение,
· получение растений, гетерозиготных по внеядерным генам и др.
Парасексуальная гибридизация важна для анализа как ядерных генов, так и внеядерных геномов. Цитоплазматический геном кодирует ряд признаков – скорость фотосинтеза, устойчивость к патогенам, абиотическим факторам и т. д. Наличие косегрегация генов (признаки, контролирующие внеядерный геном, сегрегируют совместно) свидетельствует о физическом сцеплении генов.
Слияние бывает спонтанным (чаще у протопластов из молодых тканей или суспензионных культур) и индуцированным. Для стимуляции слияния протопластов предложен ряд методов, как физических, так и химических.
При физическом способе слияния протопластов, разработанном Г. Циммерманом с сотрудниками в 1981 году, протопласты помещают в камеру с неоднородным электрополем. На электродах образуются агрегаты из 2 - 3 протопластов, либо цепочки из 5 - 6 протопластов между электродами. Дополнительный единичный импульс постоянного тока приводит к образованию пор в сильно сжатых мембранах, происходит перетекание цитоплазмы, так как переменный ток удерживает протопласты вместе некоторое время, и протопласты в таких агрегатах сливаются. Затухающий ток приводит к возвращению сферической формы у слившихся протопластов.
В основе слияния лежит различное действие постоянного и переменного электрического тока на плазмалемму. Постоянное эклектическое поле сжимает мембраны, ведя к их локальному разрушению, а переменное электрополе вызывает латеральную диффузию белков мембраны, образуя свободные от гликопротеидов липидные области, где противоположные мембраны могут установить контакт.
Чаще для индукции слияния протопластов используют методику «ПЭГ – высокие значения рН - высокая концентрация Са2+», которая дает до 50% слившихся протопластов (рН 9 - 11, концентрация Са2+ 100 - 300 ммоль/л). В присутствии полиэтиленгликоля наблюдается сильная адгезия протопластов, после удаления полиэтиленгликоля и добавления кальция - их слияние. Предполагают, что рН и ионы кальция увеличивают текучесть мембран, что связано с их жидкостно-мозаичной структурой.
При слиянии протопластов различных растений, например, А и В, могут с равной вероятностью образовываться комбинации АА, ВВ и АВ. Желаемый продукт слияния – АВ, поэтому разрабатываются способы увеличения частоты слияния именно такого типа и избирательного выделения только продукта слияния АВ. Один из таких методов заключается в следующем. Поверхность протопласта обычно несет отрицательный заряд. Путем обработки ее фосфолипидом, несущим положительный заряд, можно временно придать поверхности протопласта положительный заряд. Если теперь протопласты А, имеющие положительный заряд, смешать с необработанными протопластами В, несущими отрицательный заряд, то будут в основном образовываться комбинации АВ в результате притяжения разноименных зарядов.
Разработаны также методы маркирования протопластов того или иного растения с помощью разных флуоресцентных красителей. Если обработать протопласты одного растения флуоресцеинизотиоцианатом (FITC), а протопласты другого растения родаминизотиоцианатом (RITC), то можно, не изменяя активности клеток, пометить их желто-зеленой (FITC) или красной (RITC) флуоресценцией. Гибриды, образовавшиеся путем слияния разных типов клеток, будут иметь оба цвета флюоресценции – желто-зеленый и красный.
Протопласты могут сливаться как попарно, так и в большем количестве. Многоядерные продукты слияния, как правило, разрушаются. Первое сообщение о получении соматических гибридов на уровне растений появилось в 1972 году (Карлсон и коллеги), в нашей стране подобное осуществили в лаборатории Бутенко Р.Г. в 1975 году.
Судьба геномов (ядерного и цитоплазматического) после слияния протопластов может быть различной:
1. Ядерные генетические детерминанты наследуются как дву-, так и однородительски. В последнем случае ядра не сливаются и впоследствии сегрегируют в процессе клеточных делений.
2. Внеядерные генетические детерминанты наследуются двуродительски. При этом в межвидовых комбинациях прослеживается тенденция к соматическому выщеплению и элиминации одного из родительских цитоплазматических геномов.
3. Возникновение гибридных клеток и растений в результате слияния более чем двух родительских клеток.
Слияние протопластов приводит либо к образованию гибрида, либо к образованию цибрида. Соматический гибрид – продукт слияния и цитоплазмы, и ядра обоих протопластов. Цибрид (цитоплазматический гибрид) – растение-регенерант, содержащее цитоплазму обоих родителей и ядро одного из них. Цибриды получают, облучая перед слиянием один из протопластов γ-лучами для разрушения ядра. Скрининг таких клеток проводится по генам – маркерам ядерного и цитоплазматических (митохондриального и хлоропластного) геномов. Есть указания на рекомбинацию ДНК митохондрий и хлоропластов в гибридных клетках (Ю.Ю. Глеба, К.М. Сытник, 1984).
При слиянии могут образовываться и так называемые асимметричные гибриды – продукты слияния, имеющие полный хромосомный набор одного из партнеров и часть хромосом другого партнера. Такие гибриды часто возникают при слиянии клеток организмов, филогенетически удаленных друг от друга. В этом случае вследствие неправильных делений клетки, обусловленных некоординированным поведением двух разнородных наборов хромосом, в ряду поколений теряются частично или полностью хромосомы одного из родителей. Асимметричные гибриды бывают устойчивее, плодовитее и жизнеспособнее, чем симметричные, несущие полные наборы генов родительских клеток. В целях асимметричной гибридизации возможна избирательная обработка клеток одного из родителей для разрушения части его хромосом. Возможен прицельный перенос в клетку нужной хромосомы.
Гибриды могут быть получены путем слияния трех и более родительских клеток. Из таких гибридных клеток могут выращены растения – регенеранты.
Дата добавления: 2016-02-27; просмотров: 1177;