Дирижер взмахнул палочкой
Человек довольно небрежно оценивает силу звука – мы редко обращаем внимание на то, что звук стал немного громче или немного слабее. Совсем иначе обстоит дело с частотой. При оценке частоты мы в ряде случаев бываем предельно точны и внимательны. Большая и интересная область человеческой деятельности в значительной степени основана на том, что звуки разной частоты создают у нас ощущение различной высоты тона. Вы уже, конечно, догадались, что здесь речь идет о музыке.
Из всего огромного диапазона слышимых частот в музыке в основном используется участок от 27,5 до 4190 гц. Лишь некоторые музыкальные инструменты‑рекордсмены выходят за пределы этого диапазона. Ниже всех по частотной лестнице опустился орган – до 16 гц, выше всех поднялась маленькая флейта‑пикколо – до 4500 гц.
На своей «территории» музыканты используют не все частоты и даже далеко не все слышимые частотные интервалы. Мы знаем, что в самых неблагоприятных условиях, при очень небольшой громкости, можно различить по частоте больше 500, а при нормальной громкости до 2200 различных звуков. В музыке используется всего 88 частотных интервалов, то есть 88 звуков разной высоты. Каждому из них соответствует вполне определенная частота, значение которой вы найдете на рис. 9. Частота указана рядом с клавишами современного рояля. Из рисунка ясно, какой частоты звук мы получим, ударив по той или иной клавише.
Рис. 9. Музыкальная шкала.
Музыкальные звуки различной высоты принято обозначать особыми значками – нотами, подобно тому, как звуки речи обозначают буквами. Основа нотного письма – нотации– пять основных горизонтальных линеек и расположенные над ними или под ними коротенькие дополнительные линейки. На рис. 9 видно, какому месту на нотных линейках соответствует звук той или иной частоты. Для записи всех 88 звуков на линейках места не хватает (больше шести дополнительных линеек вводить не принято), и поэтому приходится идти на хитрость – одни и те же линейки использовать дважды. Как видите, нота, расположенная на первой основной линейке, может соответствовать частоте 98 гц либо частоте 329,6 гц. Все зависит от того, какой знак стоит перед началом нотной записи – басовый или скрипичный ключ. Дополнением к скрипичному ключу служит цифра «8», применяемая при обозначении самых высоких (высокочастотных) звуков.
Музыканты почти никогда не говорят о частоте звука. Они присвоили каждой из 88 частот свое имя и только этим именем и пользуются, если нужно назвать звук той или иной высоты. Слоговые и буквенные имена каждого из 56 основных музыкальных звуков, соответствующих белым клавишам рояля, также приведены на рис. 9.
Названия дополнительных звуков (черные клавиши) образуются из основных путем прибавления частиц «диез» (обозначается значком # ) или «бемоль» (обозначается значком b ). Первая из них соответствует увеличению, а вторая уменьшению частоты на одну ступеньку. Так, например, звук с частотой 29,14 гц (крайняя левая черная клавиша) можно назвать «Ля2 диез» (ля2 # ) либо «Си2 бемоль» (си2 b ), причем оба названия равноправны. Если знак # или b появляется на нотных линейках, то, значит, последующую ноту (либо ноты – существуют дополнительные правила) нужно сдвинуть на одну ступеньку вверх или вниз.
Разделение всех музыкальных звуков на основные и дополнительные– это вопиющая несправедливость. Названия эти появились еще в средине века, когда звуки, соответствующие черным клавишам, в музыке почти не использовались. В наследство от тех времен и достались разноцветные клавиши и неоправданно сложная система обозначения дополнительных звуков.
Настройку музыкальных инструментов производят с помощью камертона, который совершает колебания подобно струне, но, в отличие от нее, имеет строго определенную, неизменную частоту колебаний. Опорной точкой музыкальной шкалы принято считать звук «ля'», имеющий частоту 440 гц.
Нужно сказать, что в свое время частота опорной точки «ля1» довольно часто и в значительных пределах менялась. Так, первый камертон, созданный около 250 лет назад, давал звук «ля1» с частотой 419, 9 гц. Первый камертон Парижской оперы для этой же ноты давал частоту 405 гц. Вскоре, правда, частота этого камертона была повышена до 425 гц, затем до 440 гц и, наконец, к 1857 году до 448 гц. В то же время в знаменитом Миланском оперном театре Ла Скала камертон звучал с частотой 451,5 гц, а в Лондонской опере – 455 гц. Сейчас музыканты избавлены от подобной путаницы – частота 440 гц для звука «ля1» узаконена международным стандартом.
В современной музыке все частотные ступеньки, то есть интервалы между соседними клавишами, равноправны и независимо от цвета клавиш имеют одинаковую высоту. Здесь, правда, необходимо пояснить, что мы имеем в виду под словом «одинаковая».
Так же, как и при оценке громкости, для нашего слуха важно не абсолютное, а относительное изменение частоты, то есть изменение не «на столько‑то герц», а «во столько‑то раз», или, что то же самое, «на столько‑то процентов». Например, мы ощутим одинаковое повышение тона, если изменим частоту от 100 до 120 гц, или от 10 до 12 кгц. Как видите, по абсолютной величине прирост частоты получается разным – в первом случае на 20 гц, во втором на 2000 гц. И все‑таки изменение тона будет казаться одинаковым, так как частота увеличилась в одно и то же число раз – в обоих случаях ее прирост составил 20 %.
При подъеме на любую последующую ступеньку частота музыкального звука повышается примерно на 6 %, и это всегда вызывает ощущение одинакового повышения тона. Вот почему мы говорим, что все частотные ступеньки имеют одинаковую высоту. В то же время по абсолютной величине расстояние между соседними музыкальными тонами резко меняется (сравните частоты соседних звуков на рис. 9).
Частотный интервал между соседними клавишами рояля, независимо от их цвета, получил название «полутон» (изменение частоты 6 %), а интервал в два полутона составляет «тон». Нетрудно подсчитать, что вся музыкальная шкала разбита на 87 полутонов, то есть 431/2 тона[2].
Вы уже, конечно, обратили внимание, что названия музыкальных звуков периодически повторяются и следуют друг за другом одинаковыми комплектами. Каждый такой комплект называется октавой и состоит из пяти дополнительных и семи основных звуков – «до», «ре», «ми», «фа», «соль», «ля», «си». Если вы сравните одинаковые по названию звуки из соседних октав, например «до» и «до1» или «ля1» и «ля2», то обнаружите изумительную вещь: одна из частот больше другой ровно в два раза. Вот это самое «в два раза» и лежит в основе любой, в том числе и современной, музыкальной шкалы.
Появление нот двойной (четырехкратной, восьмикратной и т. д.) частоты не случайность и не выдумка изобретателя. По требованию самой природы мы вводим именно это соотношение, подобно тому, как покупаем именно два ботинка, а не один, не три и не сорок. Соотношение частот «в два раза» (то есть на 100 %) слух ставит на особое место: для слуха это самое приятное, самое естественное соотношение.
В этом можно легко убедиться: ударьте одновременно по двум одноименным клавишам рояля, и вы услышите два очень похожих звука, точнее даже – один богато окрашенный звук. Частотный интервал между двумя ближайшими одноименными звуками, например «ля1» – «ля2», называется октавой. Поэтому мы говорим, что музыкальный диапазон включает в себя семь полных октав. Каждая октава, в свою очередь, разделяется на 12 полутонов, каждый из которых дает сдвиг частоты на 6 %.
Чем же замечательны звуки с интервалом в октаву? Почему слух по‑особому ощущает двойную частоту, по‑особому реагирует на сочетание звуков, если их частоты отличаются именно «в два раза»?
В поисках ответа мы опять обратимся к роялю. Очень осторожно, так, чтобы не извлечь звука, нажмите клавишу «ля2» (f2 = 880 гц), а затем ударьте по клавише «ля1» (f 1 = 440 гц) и сразу же ее отпустите. Когда звук «ля1» затихнет, вы еще довольно долго будете слышать более высокий тон «ля2». Тот же эффект можно получить с двумя любыми клавишами, которым соответствует частотный интервал в одну, две, три и так далее октавы. Чем объяснить этот эффект? Резонансом? Но почему струна с частотой собственных колебаний 880 гц резонирует на частоте 440 гц? Как увязать такой незаконный резонанс с тем, что мы знаем о колебаниях струны?
Рассматривая процесс колебаний струны, мы значительно упростили его. Струна колеблется не только целиком, но еще и отдельными своими частями – половинками, третями, четвертушками и т. д. (рис. 10).
Рис. 10. Струна колеблется не только целиком, но и отдельными своими частями; поэтому ее звук содержит большое число гармоник (обертонов).
Поэтому реальная струна создает звук сложной формы, спектр которого содержит синусоидальные составляющие с кратными частотами: двойной, тройной, четырехкратной и т. д. Пример: струна «ля1», кроме основного звука, с частотой 440 гц, создает призвуки, как говорят музыканты, – обертоны: первый обертон 880 гц, второй – 1320 гц, третий – 1760 гц и т. д.
В физике и технике обертоны называют гармоническими составляющими или, сокращенно, гармониками. Этим названием будем в дальнейшем пользоваться и мы. Учтите, что обертоны и гармоники нумеруются по‑разному. Синусоидальный тон основной частоты (в нашем примере 440 гц) называют первой гармоникой, тон двойной частоты (880 гц), который у музыкантов числится первым обертоном, называется второй гармоникой, второй обертон (1320 гц) – третьей гармоникой и т. д. Проще говоря, в нумерацию обертонов не входит основной тон, а в нумерацию гармоник он входит. Чтобы подсчитать частоту той или иной гармоники, достаточно умножить частоту основного тона на ее порядковый номер. Легко подсчитать, что для нашего примера частота восьмой гармоники равна 3520 гц (440·8), десятой – 4400 гц (440·10) и т. д.
Теперь уже ясно, что резонанс, который мы наблюдали в своем последнем опыте, – явление вполне законное. Просто струну «ля2» (f2 = 880 гц) привела в движение вторая гармоника колебаний струны «ля1» (2f1 = 880 гц). Подобные явления могут сблизить звучание двух (или нескольких) тонов разной высоты. Причем главную роль в этом сближении играет ухо: оно само чуть‑чуть искажает форму звукового сигнала, само создает и сравнивает гармоники какого‑либо созвучия, то есть двух или нескольких звуков. При этом особое предпочтение отдается тем созвучиям, гармоники которых совпадают по частоте. Совершенно ясно, что первое место среди таких привилегированных созвучий занимают чистая прима (табл. 5) и октава – здесь гармоники согласованы наилучшим образом (рис. 10). Вот почему наш слух так хорошо выделяет интервал, соответствующий октаве, вот почему этот благозвучный интервал стал основой музыкальной шкалы.
Наряду с примой и октавой наш слух выделяет еще несколько благозвучных интервалов, так называемых консонансов. Прежде всего это чистая квинта (табл. 5), отчасти чистая кварта и в некоторой степени терция и секста. Остальные интервалы – это диссонансы, они звучат резко, даже неприятно, создают какие‑то раздражающие призвуки (рис. 11).
Рис. 11. В зависимости от интервала между двумя звуками наш слух различает созвучия консонансы (благозвучные, приятные) и созвучия диссонансы (неприятные, раздражающие).
Первые исследователи музыкальной шкалы, а этой проблемой занимался еще Пифагор, ввели в нее консонирующие интервалы в чистом виде. Однако высота частотных ступенек при этом получалась неодинаковой, и в звучании музыки часто слышалась фальшь. Около 250 лет назад немецкий ученый и музыкант Лндреас Веркмейстер путем довольно сложных математических расчетов создал так называемую двенадцатиступенчатую, равномерно темперированную шкалу. На ней высота всех частотных ступенек одинакова (6 %), и в то же время имеются интервалы, очень близкие к консонирующим: к чистой квинте, терции, кварте и др. Этой шкалой пользуется и современная музыка, хотя время от времени предлагаются проекты более совершенной музыкальной шкалы: с большим числом ступенек в пределах октавы, большим приближением к естественным, продиктованным самой природой консонирующим интервалам. Пока эти проекты остаются только проектами. Но вряд ли стоит утверждать, что в будущем они не станут достоянием музыкального искусства.
В чем же состоит различие консонанса и диссонанса? Почему ухо по‑разному реагирует на них? За счет чего одни созвучия мы относим к приятным, а другие едва в состоянии слушать? Впервые на эти вопросы попытался ответить Гельмгольц. Исследуя хорошо известное музыкантам явление – возникновение в самом ухе гармоник и комбинационных тонов, он построил довольно строгую теорию консонанса. Вот уже около ста лет ученые стремятся дополнить, развить, проверить или опровергнуть эту теорию и сами при этом открывают новые и интересные подробности анализа созвучий.
В качестве примера можно указать работы профессора С. Н. Ржевкина, который исследовал созвучия, подводя один чистый тон к правому уху, а второй – к левому. Оказалось, что в этом случае мы вообще не в состоянии заметить ни консонансов, ни диссонансов. Так еще раз было доказано, что истинное созвучие получается лишь тогда, когда оба звука попадают в одно ухо и там создают «гибридные» комбинационные тона.
Другую музыкальную проблему, привлекающую внимание физиков и физиологов, можно определить одним словом «ритмы». Марш, вальс, галоп, колыбельная. Даже эти простые примеры говорят о том, что ритмический рисунок – сложное чередование акцентов, пауз, звуков различной длительности – одно из главных выразительных средств музыки. Попутно хочется заметить, что не только в музыке, но в стихах, отчасти и в прозе, слух выделяет, а мозг оценивает созвучия (рифмы) и ритмы. Есть основание думать, что действие музыкальных и поэтических ритмов связано с ходом наших внутренних «биологических часов». Эти «часы» представляют собой сложные и пока еще во многом загадочные биологические и биохимические системы, которые отбивают такт работы отдельных клеток и целых органов – сердца, легких, мозга, определяют ритм жизни.
Наряду с изменением громкости и высоты звука, сложными ритмами, приятным и неприятным сочетанием тонов музыкальное искусство использует еще одно сильнейшее «оружие» – тембры. Мы уже знаем, что тембровая окраска определяется спектром звука – числом гармоник (обертонов) и их амплитудами. Ну, а сам спектр прежде всего зависит от того, каким способом создается звук, какой музыкальный инструмент является его источником [1][3].
Из всех музыкальных инструментов принято выделять три основные группы: струнные, духовые и ударные (рис. 12).
Рис. 12. Музыкальные инструменты.
В струнных инструментах, как говорит само название, источником звука является колеблющаяся струна. Можно думать, что далеким предком этих инструментов была туго натянутая поющая тетива лука. В зависимости от того, каким образом струна приводится в движение, среди струнных инструментов выделяют смычковые (скрипка, альт, виолончель, контрабас), щипковые (арфа, гитара, гусли, мандолина, балалайка) и клавишно‑ударные (рояль).
Сама по себе струна создает очень слабый звук – уже на расстоянии 2–3 м он почти не слышен. Это связано с тем, что струна, даже самая толстая, имеет очень небольшую площадь поперечного сечения и увлекает за собой малый объем воздуха. Чтобы получить заметную звуковую мощность, во всех струнных инструментах, струну объединяют с большим излучателем. Струна приводит в движение излучатель, а он уже, захватывая большие массы воздуха, создает достаточно мощное излучение. У скрипки, гитары, контрабаса основной излучатель звука – это сам корпус инструмента, у рояля основным излучателем является особой формы доска – резонансная дека, над которой натянуты струны.
У каждого типа музыкальных инструментов имеется свой характерный тембр. Более того, даже инструменты одного и того же типа создают звук с различной тембровой окраской. Так, например, прослушав несколько, казалось бы, одинаковых скрипок, человек с хорошим слухом у каждой из них обнаружит какую‑либо особенность звучания.
Как уже говорилось, струна создает большое число гармоник. Излучатель‑корпус, резонируя на разных частотах, усиливает те или иные гармоники, подчеркивает их, окончательно формирует тембр. Те области частотного диапазона, где происходит усиление, подчеркивание гармоник, называют формантами. Можно сказать, что форманта – это область, где частотная характеристика излучателя звука имеет заметный подъем.
В правой части рис. 12 показаны графики, характеризующие тембровые особенности некоторых музыкальных инструментов. Первые два графика – это резонансные характеристики различных по звучанию скрипок. Характеристики показывают, в какой степени тот или иной инструмент подчеркивает звуковые колебания разных частот. Из графиков видно, что различные по характеру звучания скрипки прежде всего отличаются своими формантами. Так, в частности, главная форманта в знаменитых скрипках старинного итальянского мастера Страдивариуса находится в области 3200–4200 гц, в то время как у плохой скрипки эта форманта сдвинута в область 2200–2800 гц.
На третьем графике показан спектр звука «до» (частота 130 гц) на современном рояле, а на следующем графике – спектр того же звука, воспроизведенного на фортепьяно эпохи Бетховена. В старинном фортепьяно применялись тонкие струны, и натянуты они были во много раз слабее, чем на современном рояле[4]. Ударный молоточек был оклеен сравнительно жестким материалом, поэтому звук содержал большое число высших гармоник и имел звенящий («проволочный») оттенок.
В духовых музыкальных инструментах основным звучащим телом является столб воздуха. В зависимости от того, каким образом создаются колебания воздушного столба, различают духовые инструменты язычковые и безъязычковые. В язычковых инструментах (кларнет, гобой, саксофон, фагот) поток воздуха заставляет колебаться упругий язычок – тонкую металлическую, деревянную или тростниковую пластинку.
Сложная колебательная система «язычок – столб воздуха» и определяет «голос» инструмента. К язычковым духовым можно отнести баяны, гармони, аккордеоны. Здесь металлические язычки приводятся в движение воздухом, который нагнетают мехами. К язычковым часто относят и так называемые амбушюрные инструменты. Это трубы (труба, тромбон, валторна, пионерский горн), где роль колеблющегося язычка выполняют определенным образом сложенные губы музыканта.
Безъязычковые духовые инструменты (флейта, свирель, дудка) часто называют свистковыми – по принципу действия они напоминают обычный свисток. Источником колебаний в этих инструментах является воздушный вихрь – быстрый поток воздуха. Зацепившись за острый край так называемой губы, он создает ритмические вихревые движения, а они возбуждают звуковые колебания всего воздушного столба. Точно так же создается звук во многих органных трубах. В старинных органах воздух нагнетали большими мехами, а сейчас для этой цели используют мощные вентиляторы с электромоторами. Органист, нажимая на клавиши, переключает потоки воздуха, подает их на различные трубы.
В современном органе имеется несколько тысяч труб, которые создают звуки различной высоты и различных тембров. Частота звука зависит от размеров трубы. Большие органные трубы (длина до 11 м) создают низкочастотные звуки, а маленькие (длина до 10 мм) – высокочастотные. В духовых инструментах есть только одна труба, и для изменения высоты звука меняют ее действующую длину.
Для этого с помощью клапанов, а иногда и с помощью пальцев перекрывают отверстия в самой трубе (кларнет, фагот, гобой и др.), или направляют воздушный поток в ответвления основной трубы (валторна, кларнет, труба и др), или, наконец, меняют длину трубы с помощью выдвижного колена (тромбон). Кроме того, менять частоту звука можно, используя различные приемы вдувания воздуха, как это делают горнисты.
Особенность большинства ударных инструментов состоит в том, что они создают звук с большим числом сравнительно мощных гармоник, и, как правило, трудно говорить об основной частоте такого звука. Гармонические составляющие так близки, что их приходится рассматривать как сплошные полосы частот. Тембр ударного инструмента зависит от того, какие частоты входят в эту полосу и как распределяется мощность звука между участками полосы. Известно, что большой барабан явно «басит», а маленький создает резкий, звенящий звук, в который наряду с низкочастотными входят еще и высокочастотные составляющие. Эти особенности звучания отражены и в спектрах звука большого и малого барабанов (рис. 12).
У всякого музыкального звука различают три части: атаку, установившуюся часть и спад. Тембр любого музыкального инструмента зависит от того, как изменяется сила звука, от формы атаки и спада. Был проделан интересный опыт, который показал, насколько велико значение характера атаки. Музыкантам предложили прослушать через наушники несколько различных инструментов, причем наушники включались лишь после окончания атаки, через несколько десятых долей секунды после начала звучания. При этом даже опытные музыканты путали одни инструменты с другими.
Можно предположить, что подобные ошибки возникали с непривычки, так как слух музыкантов не приучен к обрубленным звукам, которые по своему спектру сильно отличаются от настоящего звука с нормальной атакой. Во всяком случае, ошибку никак нельзя отнести за счет плохой работы слухового аппарата – ухо анализирует и различает спектры сложных звуков с очень высокой точностью. Человек с натренированным слухом слышит каждую из 10–15 наиболее сильных гармоник сложного звука. Дирижеры и хормейстеры четко различают в многоголосом звучании хора и оркестра голоса певцов и звучание отдельных инструментов.
Рассказывают, что известный итальянский дирижер Артуро Тосканини однажды остановил репетицию большого симфонического оркестра и сделал замечание какому‑то скрипачу – одна из струн его скрипки имела чуть‑чуть пониженную частоту.
Изумительной способностью слухового аппарата анализировать спектры сложных звуков пользуется каждый из нас. Именно благодаря этой способности мы различаем звуки речи и можем обмениваться информацией по линиям акустической связи, проще говоря, можем разговаривать друг с другом.
Звуки речи имеют очень сложную форму кривой и очень сложный спектральный состав (рис. 7, 6 ). Формируются эти звуки голосовым аппаратом, который часто называют самым совершенным музыкальным инструментом. Звук образуется с помощью воздушного потока, который создают легкие.
После глубокого вдоха человек может выдохнуть около 4000 см3 воздуха, а при спокойном дыхании объем этот уменьшается в 5–10 раз. Когда мы поем, то расходуем 50–100 см3воздуха в секунду, а при разговоре воздух расходуется еще экономнее. Интересно, что при тихом пении (пиано) опытные певцы расходуют в два раза больше воздуха, чем при громком (форте).
Легкие, подобно мехам баяна, продувают воздух через главный генератор звуковых колебаний – голосовые связки. Когда человек дышит, то голосовые связки раздвинуты, и образовавшаяся между ними щель легко пропускает воздух. Когда же мы говорим или поем, то щель сужается, а сами связки вибрируют и создают звук (рис. 7, 6, а, б ). Управляют голосовыми связками особые мускулы, получающие сигналы из мозга. Меняя натяжение и длину связок, эти мускулы изменяют и основную частоту звуковых колебаний.
рис. 7 , 6, а, б
Далее звуковая волна проходит через сложные резонансные полости (рот, носоглотка), где окончательно формируется спектр звука. В этом процессе главную роль играют губы, язык, зубы, нос, нёбо, с помощью которых подчеркиваются определенные составляющие сложного звука, то есть создаются определенные форманты. Так, в частности, для звука «о» характерна одна формантная область, середина которой может лежать в пределах от 550 до 850 гц; для звука «а» обнаружены две форманты – 550–850 гц и около 3 кгц; для звука «у» три форманты – около 550, 1900 и 2990 гц.
Сложнее обстоит дело с согласными звуками – некоторые из них произносятся без участия голосовых связок, а только с помощью полости рта. Для ряда согласных характерны составляющие сочень высокими частотами: для «ш» – до 4 кгц, для «с» – до 8 кгц. Для согласной «р» характерна составляющая с очень низкой частотой – около 20 гц.
Несколько слов о характеристиках певческого голоса. Прежде всего мы различаем голоса певцов по их частотному диапазону (табл. 6).
Приведенные в таблице цифры – это весьма условные границы, и их нельзя считать пределом. Так, например, около двухсот лет назад Моцарт слушал певицу Бастарделлу, которая довольно легко брала си третьей октавы (частота 1975 гц). А несколько лет назад в нашей стране гастролировала перуанская певица Има Сумак, которая пела не только в диапазонах женских голосов, но могла перейти в область тенора, баритона и даже баса [2].
Важная характеристика певческого голоса – вибрато. Так называют сравнительно медленное, с частотой около 6 гц, «качание» голоса. При меньшей частоте это качание кажется очень неприятным, при большей частоте в голосе слышится какая‑то дрожь.
Красота звучания голоса в большей степени зависит от певческой форманты, которая лежит в области 2800 гц для мужских и в области 3200 гц для женских голосов. Значительное повышение частоты этой форманты придает голосу крикливость.
Процессы образования звуков речи и формирования певческого голоса еще далеко не изучены. Пока мы еще не можем полностью разобрать на части такую сложную характеристику, как красота певческого голоса. И вместе с тем такие точные показатели, как частота вибрато, сила голоса, частотные границы, средние частоты формантных областей, помогают оценивать голосовые данные, помогают формировать красивые голоса при обучении певцов.
При разговоре и пении человек расходует на создание звуковых волн очень небольшую мощность – даже для громких звуков она не превышает 1 вт. Но лишь очень небольшая часть этой небольшой мощности передается самим звуковым колебаниям, так как коэффициент полезного действия (к. п. д.) нашего речевого аппарата составляет 0,2–1 %. Таким образом, расходуя мощность 1 вт, мы излучаем звуковые колебания мощностью не более 0,01 вт (10 мет). Попутно заметим, что к. п. д. большинства музыкальных инструментов также очень мал: как правило, меньше 0,1 %.
По мере удаления от излучателя сила звука резко убывает. Здесь действует так называемая квадратичная зависимость: если увеличить расстояние в два раза, то сила звука уменьшится в четыре раза; при увеличении расстояния в десять раз сила звука падает в сто раз.
Все приведенные цифры говорят о том, что уху достаются очень слабые звуковые сигналы. Это особенно сильно ощущается, если собеседник находится далеко от нас и его голос теряется на фоне различных посторонних шумов. Когда уровень этих шумов невелик, например в ночное время, дальность разговорной связи заметно возрастает. Однако даже в самых благоприятных условиях наибольшее расстояние, на котором люди могут переговариваться или «перекрикиваться», не превышает нескольких тысяч метров.
Звуковой связью пользуются многие представители живого мира. Примитивной звуковой связью пользовались и первобытные люди. А затем она послужила основой для развития разумной речи, для развития мышления.
Очень четко об этом сказал Фридрих Энгельс: «Сначала труд, а затем и вместе с ним членораздельная речь явились двумя самыми главными стимулами, под влиянием которых мозг обезьяны постепенно превратился в человеческий мозг…»
Но если наших далеких предков вполне устраивала звуковая связь, то ее оказалось явно недостаточно в наш век – век больших скоростей, могучей промышленности, в век сложных экономических связей между отдаленными районами. На помощь медленному звуку пришел электрический сигнал, который мгновенно и без устали проходит огромные расстояния. С помощью такого замечательного союзника древнейшее изобретение природы – звуковая связь – начало совершенно новую жизнь.
В линиях акустической связи звуковые волны переносят информацию. Но каким образом записана эта информация, чем отличаются одни звуковые сигналы от других, как закодирована звуковая «телеграмма»?
Мы уже знаем, что различные звуки имеют разную форму кривой графиков, то есть различный спектральный состав. Именно в форме кривой звука, в его спектральном составе «записаны» знакомые слова, именно набором синусоидальных составляющих звук, несущий «да», отличается от звука, несущего «нет».
По образцу звуковых колебаний можно создать электрические колебания с такой же формой кривой, а значит, и с таким же спектром. В этом случае в электрических колебаниях будет записана та же информация, что и в звуковых. Электрическую копию звука можно передать на большие расстояния, отправить на длительное хранение («записать»), во много раз усилить ее мощность и, наконец, когда это понадобится, вновь превратить в звук.
В следующей главе мы познакомимся с некоторыми участниками этих интересных преобразований.
Глава II
Дата добавления: 2016-02-24; просмотров: 3111;