Цветные металлы и сплавы. Алюминий имеет кубическую гранецентрированную кристаллическую решетку

 

Алюминий имеет кубическую гранецентрированную кристаллическую решетку. Технически чистый алюминий характеризуется низкой плотностью – 2700 кг/м3, стойкостью к коррозии, хорошей свариваемостью, высокой пластичностью. Может обрабатываться давлением. Обработка резанием затруднена. Алюминий имеет сравнительно низкую прочность и низкий модуль упругости.

Основным сырьем для производства алюминия являются бокситы Аl2O3.2H2O. Оксид алюминия, образующийся после обезвоживания бокситов при прокаливании, подвергают электролизу при температуре около 1000 оС. Для понижения температуры плавления оксида алюминия добавляют минерал криолит Na3AlF6. На катоде, выполненном в виде графитовой подины, выделяется жидкий алюминий, который периодически выпускают из ванны. Технически чистый алюминий применяют для изготовления ненагруженных конструкций в агрессивной среде. Прочность алюминия повышают легированием и производством сплавов алюминия с медью, кремнием, магнием, цинком, марганцем. Большинство легирующих элементов образуют с алюминием твердые растворы.

Сплав алюминия с медью относят к деформируемым сплавам. Растворимость меди в алюминии при комнатной температуре составляет 0,1…0,2 %. При содержании меди в сплаве около 4 % структура сплава характеризуется присутствием твердого раствора меди в алюминии и мелких кристаллов CuAl2. При температуре 548 °С растворимость меди составляет 5,65 %.

При закалке удается зафиксировать высокотемпературную структуру сплава. Закалка состоит в нагреве сплава до температуры 530 °С, при которой вся медь растворяется в алюминии, и в последующем резком охлаждении в воде. При закалке сплав упрочняется, но не полностью. С целью дальнейшего упрочнения его подвергают старению, то есть вылеживанию при комнатной температуре или при температуре 100…150 ◦С. Из пересыщенного раствора при этом могут выделяться мельчайшие частицы упрочняющей фазы СuАl2, но без обособления этих частиц, которые не удается обнаружить под микроскопом. Старение при более высокой температуре может привести к разупрочнению сплава.

Дуралюмин Д1 – это алюминиевый сплав, содержащий 3,8…4,8 % меди, 0,4…0,8 % магния, 0,4…0,8 % марганца, не более 0,7 % кремния и не более 0,7 % железа. Железо и кремний являются неизбежными примесями. Медь, магний и марганец вводят в сплав специально.

После закалки такой сплав состоит из зерен пересыщенного твердого раствора меди в алюминии, интерметаллических соединений Мg2Si, FeAl3, (MnFe)Al6, CuMgAl2, CuAl2 и

других не растворившихся в твердом алюминии фаз. Таким образом, сплавы системы Аl-Cu относят к деформируемым и упрочняемым термической обработкой.

Силумины представляют собой сплавы алюминия с 8…14 % кремния. Они обладают хорошими литейными свойствами, хорошо заполняют форму, имеют малую усадку и не склонны к образованию трещин. В них возможно присутствие газовой пористости. Алюминий, содержащий 11,6 % кремния, образует эвтектику. На практике применяют доэвтектические сплавы, так как избыточный кремний способствует повышению хрупкости сплава.

Если силумин перед разливкой модифицировать натрием или смесью солей фтористого и хлористого натрия в количестве не более 0,01 %, эвтектика становится мелкозернистой. Механические свойства силумина повышаются. Возрастают как прочность при разрыве, так и относительное удлинение. Закалку для силумина не применяют.

Медь и ее сплавы. Чистая медь пластична. Плотность ее – 8930 кг/м3. Кристаллическая решетка меди кубическая гранецентрированная. Медь отличается высокой электропроводностью. Примеси понижают электропроводность меди.

Пирометаллургический метод производства меди состоит в плавке концентрата в отражательных или электрических печах с целью разделения его на первичный штейн и оксиды, составляющие шлак.

При нагреве концентрата до 1250…1300 ◦С происходит восста-новление оксида меди и высших оксидов железа. В результате образуется закись меди Cu2O, которая, взаимодействуя с FeS, приводит к получению Cu2S.

Первичный штейн состоит из сплавленных сульфидов меди и железа. Другие оксиды, расплавленные в силикатах железа, составляют шлак. Периодически первичный штейн и шлак выпускают из печи. Затем первичный штейн плавят в кислородном конвертере, где в присутствии кислорода происходит удаление соединений железа в шлак и выделение черновой меди. В черновой меди содержится 98,4…99,4 % чистой меди.

В строительстве известно применение меди для устройства долговечной кровли. Сплавы меди с цинком называют латунями. Они маркируются буквой Л. В марке латуни указывают также процентное содержание меди. Например, латунь марки Л 80 содержит 80 % меди и 20 % цинка.

Практическое применение находят латуни, с содержанием цинка до 44 % имеют. Латуни представляют собой твердые растворы цинка в меди. Они имеют кристаллическую решетку меди – кубическую гранецентрированную. Из латуни деформированием изготавливают прутки, трубы, листы.

Бронзы – это многокомпонентные сплавы меди с оловом, алюминием, свинцом, кремнием, бериллием, хромом. Оловянные и свинцовые бронзы обладают антифрикционными свойствами.

Баббиты – сплавы на оловянной или свинцовой основе, также обладают антифрикционными свойствами. Например, сплав Б83 содержит 83 % олова, 11 % сурьмы и 6 % меди.

 








Дата добавления: 2016-02-09; просмотров: 1148;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.