Перемещение точки, тела и системы

Перемещение точки — это пространственная мера изменения местоположения точки в данной системе отсчета. Перемещение (линейное) измеряется разностью координат в моменты начала и окончания движения в одной и той же системе отсчета расстоя­ний:

Линейное перемещение точки показывает,на каком расстоянии в результате движения оказалась точка относительно начального (исходного) положения.Перемещение— величина векторная. Онахарактеризуется численным значением (модулем) и направ­лением, т. е. определяет раз­мах и направление движения. Если после движения точка вернулась в исходное поло­жение, перемещение равно нулю. Таким образом, пере­мещение есть не само движе­ние, а лишь его окончательный результат — расстояние по прямой и направление от исходного до конечного поло­жения.

Перемещение тела изме­ряется различно в случаях поступательного и вращатель­ного движений.

При поступатель­ном движении любая прямая, соединяющая какие-либо две точки тела, все время остается параллельной самой себе, при этом все точки тела движутся одинаково, скорости их равны. Следовательно, перемещение тела при поступательном движении можно определить по перемещению любой его точки. Для этого из каждой коор­динаты конечного положения точки надо вы­честь соответствующую координату началь­ного положения.

При вращательном движении какие-либо две точки, неизменно связанные с ним (внутри или вне тела), остаются во время всего движения неподвижными1, при этом все точки тела, кроме неподвижных, движутся по дугам ок­ружностей, центры которых лежат на одной неподвижной линии — оси вращения, линей­ные скорости точек тела пропорциональны их расстояниям от оси. Следовательно, перемещение тела при вращательном движении можно измерить углом поворота — разностью угловых координат в одной и той же системе отсчета расстояний:

Любое движение тела в пространстве можно представить как гео­метрическую сумму поступательного и вращательного (вокруг центра тяжести) движений 2.

Намного сложнее определить перемещение биомеханической системы, изменяющей свою конфигурацию. В самых упрощенных случаях дви­жение биомеханической системы рассматривают как движение одной материальной точки — обычно его общего центра тяжести (ОЦТ). Тогда можно проследить за перемещением всего тела человека «в це­лом», оценить в известной мере общий результат его двигательной дея­тельности. Но остается неизвестным, в результате каких именно движений достигнуто перемещение ОЦТ. Иногда перемещение тела представляют в виде перемещения условно связанной с ним линии (линия отсчета). Достоинства и недостатки этого способа в основном те же, что и в предыдущем.

Изучение у человека движений звеньев позволяет более подробно рассмотреть перемещение его тела. В некоторых случаях подвижные части (например, все кости стопы, кисти, предплечья, даже туловища) рассматриваются как одно звено. Здесь уже можно в общих чертах уловить особенности движений, хотя взаимное движение многих звеньев не учитывается и их деформациями пренебрегают. Однако получить полную картину перемещений всех существенных элементов тела (включая и внутренние органы, и жидкие ткани) при существую­щих методах исследования пока еще невозможно. Всегда приходится прибегать к более или менее значительному упрощению, которое неиз­бежно вообще в любом научном исследовании.

Перемещения отдельных точек тела человека рассматриваются в трехмерном пространстве — определяются их линейные перемещения относительно начала отсчета.

В большей части случаев движения звеньев в суставах рассматри­вают как вращательные и определяют угловые перемещения звеньев относительно смежных с ними.

Траектория точна

Траектория точки — это пространственная мера движения (вооб­ражаемый след движения точки)1. Измеряют длину и кривизну траектории и определяют ее ориентацию в пространстве.

Движущаяся точка занимает ряд непрерывно сменяющихся проме­жуточных положений; ее движение образует непрерывную линию — траекторию. При движении точки ее координаты изменяются. Они становятся больше или меньше, могут менять знак на обратный.

Изменение координат точки определяет направление и величину пере­мещения

При постоянном на­правлении движения траек­тория по форме представляет пря­мую линию (прямолинейное дви­жение 2); при переменном направлении — кривую (кри­волинейное движение).

Длину траектории (расстояние вдоль нее) характеризует путь точки. При прямолиней­ном движении для определенного участка траектории (прямой линии) измеряют его длину.

При криволинейном движении вектор перемещения — хорда участ­ка криволинейной траектории—не совпадает с траекторией. Малое перемещение, при котором можно с необходимой степенью точности заменить малый участок траектории ее хордой, условимся называть элементарным перемещением (ds).

При криволинейном движении путь точки равен ариф­метической сумме модулей ее элементарных перемещений; перемещение же точки равно геометрической сумме ее элементар­ных перемещений.

Форму криволинейного движения характеризует кривизна траектории (k). Это величина, обратная радиусу кривизны траектории (R), т. е. радиусу такой элементарной дуги окружности, которой допустимо заменять соответствующий элементарный участок траектории: k=1/R

Следовательно, чем больше радиус такой дуги, тем меньше кри­визна траектории.

Для траектории любой формы определяют такжеееориентацию в пространстве: для прямой траектории — по координа­там точек начального и конечного положений, для кривой — по коор­динатам этих двух точек траектории и третьей точки, не лежащей с ними на одной прямой.

При поступательном движении тела у всех его точек траектории одинаковые. По траектории одной точки (например, ОЦТ) можно изучить движение тела. При вращательном движении тела у каждой его точки свой след в пространстве, хотя у точек с оди­наковым радиусом траектории по форме одинаковы. Здесь движение всего тела (только когда оно простое вращательное) также можно изу­чить, определив по траектории одной точки угол поворота тела.

При движении же биомеханической системы надо определить траек­тории точек ее звеньев, а также траекторию ее ОЦТ.

Траектории точек каждого звена относительно оси сустава можно приближенно считать дугами окружностей. Однако относительно осей соседних суставов или системы прямоугольных координат, связанной, например, с Землей, траектории точек имеют сложные и разнообраз­ные формы. Лишь иногда движения точек плоские. Почти всегда про­странственные (трехмерные) траектории кривые. Они, как правило, исключительно сложны для составления уравнений, описывающих закон движения3.

Таким образом, все пространственные характе­ристики — координаты, перемещения и траек­тории — в совокупности определяют начало и окончание движения и его форму в пространстве.








Дата добавления: 2016-02-09; просмотров: 1490;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.