Температурные интервалы начала и конца ковки для углеродистых сталей 3 страница
Схема установка для электронно-лучевой сварки представлена на рис. 17.5.
Рис.17.5. Схема установки для электронно-дуговой сварки
Электроны, испускаемые катодом 1 электронной пушки, формируются в пучок электродом 2, расположенным непосредственно за катодом, ускоряются под действием разности потенциалов между катодом и анодом 3, составляющей 20…150 кВ и выше, затем фокусируются в виде луча и направляются специальной отклоняющей магнитной системой 5 на обрабатываемое изделие 6. На формирующий электрод 2 подается отрицательный или нулевой по отношению к катоду потенциал. Фокусировкой достигается высокая удельная мощность луча. Ток электронного луча невелик – от нескольких миллиампер до единиц ампер.
Процессу электронно-лучевой сварки присущи две характерные особенности:
- сварка протекает в вакууме, обеспечивается получение зеркально чистой поверхности и дегазация расплавленного металла;
- интенсивность нагрева очень велика, что обеспечивает быстрое плавление и затвердевание металла. Шов получается мелкозернистый с высокими механическими свойствами, с минимальной шириной, что позволяет сваривать сплавы, чувствительные к нагреву.
Электронно-лучевой сваркой изготовляют детали из тугоплавких, химически активных металлов и их сплавов (вольфрамовых, танталовых, молибденовых, ниобиевых, циркониевых), а также алюминиевых и титановых сплавов и высоколегированных сталей. Металлы и сплавы можно сваривать в однородных и разнородных сочетаниях, со значительной разностью толщин, температур плавления. Минимальная толщина свариваемых заготовок составляет 0,02 мм, максимальная – до 100 мм.
Лазерная сварка.
Лазерная сварка – способ сварки плавлением, при которых металл нагревают излучением лазера.
Лазерный луч представляет собой вынужденное монохроматическое излучение, длина волны которого зависит от природы рабочего тела лазера-излучателя. Оно возникает в результате вынужденных скачкообразных переходов возбужденных атомов рабочих тел на более низкие энергетические уровни.
Основными параметрами режимов лазерной обработки являются мощность излучения, диаметр пятна фокусировки, скорость перемещения обрабатываемого материала относительно луча.
Преимуществом лазерной сварки является быстрый точечный нагрев металла до плавления. Интенсивный сосредоточенный нагрев обуславливает и чрезвычайно большую скорость охлаждения после прекращения воздействия луча. Это позволяет свести к минимуму ширину околошовной зоны, сварочные напряжения и деформации.
Механизм процессов при лазерной сварке схож с электронно-лучевой сваркой, но не обязательно вакуумировать изделие.
Лазером сваривают преимущественно толщины до 1 мм, так как коэффициент полезного действия преобразования энергии в лазерное излучение довольно низкий.
Газовая сварка
При газовой сварке заготовки 1 и присадочный материал 2 в виде прутка или проволоки расплавляют высокотемпературным пламенем 4 газовой горелки 3 (рис. 17.6).
Рис. 17.6. Схема газовой сварки
Газовое пламя получают при сгорании горючего газа в атмосфере технически чистого кислорода. Мощность пламени регулируют сменой наконечников горелки.
Нагрев заготовки осуществляется более плавно, чем при дуговой сварке, поэтому газовую сварку применяют для сварки металла малой толщины (0,2…3 мм), легкоплавких цветных металлов и сплавов; металлов и сплавов, требующих постепенного нагрева и охлаждения (инструментальные стали, латуни); для подварки дефектов в чугунных и бронзовых отливках. При увеличении толщины металла снижается производительность и увеличивается деформация.
ЛЕКЦИЯ 13
Сварка давлением. Специальные термические процессы в сварочном производстве. Пайка
Сварка давлением
Сущность получения неразъемного сварного соединения двух заготовок в твердом состоянии состоит в сближении идеально чистых соединяемых поверхностей на расстояния (2…4) 10 – 10 см, при которых возникают межатомные силы притяжения.
Необходимым условием получения качественного соединения в твердом состоянии являются хорошая очистка и подготовка поверхностей и наличие сдвиговых пластичных деформаций в зоне соединения в момент сварки.
Контактная сварка
Сварные соединения получаются в результате нагрева деталей проходящим через них током и последующей пластической деформации зоны соединения.
Сварка осуществляется на машинах, состоящих из источника тока, прерывателя тока и механизмов зажатия заготовок и давления.
К деталям с помощью электродов подводят ток небольшого напряжения (3…8 В) и большой силы (до нескольких десятков кА). Большая часть тепла выделяется в зоне контакта деталей.
По виду получаемого соединения контактную сварку подразделяют на точечную, шовную, стыковую. Схемы контактной сварки представлены на рис. 18.1.
Стыковая контактная сварка (рис.18.1.а) – способ соединения деталей по всей плоскости их касания.
Свариваемые заготовки 1 плотно зажимают в неподвижном 2 и подвижном 3 токоподводах, подключенных к вторичной обмотке сварочного трансформатора 4. Для обеспечения плотного электрического контакта свариваемые поверхности приводят в соприкосновение и сжимают. Затем включается ток. Поверхность контакта заготовок разогревается до требуемой температуры, ток отключается, производится сдавливание заготовок – осадка.
Стыковую сварку с разогревом стыка до пластического состояния и последующей осадкой называют сваркой сопротивлением, а при разогреве торцов до оплавления с последующей осадкой – сваркой оплавлением. В результате пластической деформации и быстрой рекристаллизации в зоне образуются рекристаллизованные зерна из материала обеих деталей.
Сварка применяется для соединения встык деталей типа стержней, толстостенных труб, рельсов и т.п.
Точечная сварка(рис.18.1.б) – способ изготовления листовых или стержневых конструкций, позволяющий получить прочные соединения в отдельных точках.
Рис. 18.1. Схемы контактной сварки:
а – стыковой; б – точечной; в – шовной
Свариваемые заготовки 1, собранные внахлест, зажимают между неподвижным 2 и подвижным 3 электродами, подсоединенными к обмотке трансформатора 4.
Электроды изнутри охлаждаются водой, нагрев локализуется на участках соприкосновения деталей между электродами. Получают линзу расплава требуемого размера, ток выключают, расплав затвердевает, образуется сварная точка. Электроды сжимают детали, пластически деформируя их.
Образующееся сварное соединение обладает большой прочностью и его можно применять для изготовления несущих конструкций. Этот способ широко применяют в авто- и вагоностроении, строительстве, а также при сборке электрических схем.
Шовная сварка(рис.18.1.в) – способ соединения деталей швом, состоящим из отдельных сварных точек.
Свариваемые заготовки 1 помещают между двумя роликами-электродами, один из электродов 2 может иметь вращательное движение, а другой 3 – вращательное движение и перемещение в вертикальном направлении. Электроды подключаются к вторичной обмотке трансформатора 4. Электроды-ролики зажимают и передвигают деталь.
Шовная сварка обеспечивает получение прочных и герметичных соединений их листового материала толщиной до 5 мм.
Диффузионная сварка
Диффузионная сварка–способ сварки давлением в вакууме приложением сдавливающих сил при повышенной температуре.
Свариваемые детали тщательно зачищают, сжимают, нагревают в вакууме специальным источником тепла до температуры рекристаллизации (0,4 Тпл), и длительно выдерживают. В начальной стадии процесса создаются условия для образования металлических связей между соединяемыми поверхностями. Низкое давление способствует удалению поверхностных пленок, а высокая температура и давление приводят к уменьшению неровностей поверхностей и сближению их до нужного расстояния. Затем протекают процессы диффузии в металле, образуются промежуточные слои, увеличивающие прочность соединения. Соединения получают при небольшой пластической деформации. Изменение размеров мало.
Сварка может осуществляться в среде инертных и защитных газов: гелий, аргон, водород.
Способ применяется для соединения металлов, металлов и полупроводников, а также других неметаллических материалов.
Диффузионная сварка широко применяется в космической технике, в электротехнической, радиотехнической и других отраслях промышленности.
Сварка трением
Сварка трением–способ сварки давлением при воздействии теплоты, возникающей при трении свариваемых поверхностей.
Свариваемые заготовки устанавливают соосно в зажимах машины, один из которых неподвижен, а другой может совершать вращательное и поступательное движения. Заготовки сжимаются осевым усилием, и включается механизм вращения. При достижении температуры 980…1300 0С вращение заготовок прекращают при продолжении сжатия.
Иногда сварку трением производят через промежуточный вращаемый элемент или заменяют вращательное движение вибрацией.
Сваркой трением можно сваривать заготовки диаметром 0,75…140 мм.
Преимущества способа: простота, высокая производительность, малая энергоемкость, стабильность качества соединения, возможность сварки заготовок из разнородных материалов.
Осуществляется сварка на специальных машинах.
Сварка взрывом
Большинство технологических схем сварки взрывом основано на использовании направленного взрыва.
Соединяемые поверхности заготовок, одна из которых неподвижна и служит основанием, располагают под углом друг к другу на определенном расстоянии. На вторую заготовку укладывают взрывчатое вещество и устанавливают детонатор. Сварку осуществляют на жесткой опоре. При соударении двух деталей под действием ударной волны, движущихся с большой скоростью, между ними образуется кумулятивная струя, которая разрушает и уносит оксидные поверхностные пленки и другие загрязнения. Поверхности сближаются до расстояния действия межатомных сил, и происходит схватывание по всей площади соединения. Продолжительность сварки несколько микросекунд.
Прочность соединений, выполненных сваркой взрывом, выше прочности соединяемых материалов.
Сварку взрывом используют при изготовлении заготовок для проката биметалла, плакировке поверхностей конструкционных сталей металлами и сплавами со специальными свойствами, при сварке заготовок из разнородных материалов. Целесообразно сочетание сварки взрывом со штамповкой и ковкой.
Тип сварного соединения
Основными преимуществами сварных соединений являются: экономия металла; снижение трудоемкости изготовления корпусных деталей; возможность изготовления конструкций сложной формы из отдельных деталей, полученных ковкой, прокаткой, штамповкой.
Сварным конструкциям присущи и некоторые недостатки: появление остаточных напряжений; коробление в процессе сварки; плохое восприятие знакопеременных напряжений, особенно вибраций; сложность и трудоемкость контроля.
Тип сварного соединения определяют взаимным расположением свариваемых элементов и формой подготовки (разделки) их кромок под сварку.
В зависимости расположения соединяемых деталей различают четыре основных типа сварных соединений: стыковые, нахлесточные, угловые и тавровые (рис. 18.2).
Рис.18.2. Основные типы сварных соединений
а – стыковое; б – нахлесточное; в – тавровое; г – угловое
Кромки разделывают в целях полного провара заготовок по сечению, что является одним из условий равнопрочности сварного соединения с основным металлом.
Формы подготовки кромок под сварку показаны на рис. 18.3. различают V, K, X – образные
По характеру выполнения сварные швы могут быть односторонние и двухсторонние.
Рис. 18.3. Формы подготовки кромок под сварку:
а – V-образная; б – U -образная; в – X-образная; г – двусторонняя Х-образная
Специальные термические процессы в сварочном производстве
Наплавка – процесс нанесения слоя металла или сплава на поверхность изделия.
Наплавка позволяет получать детали с поверхностью, отличающейся от основного металла, например жаростойкостью и жаропрочностью, высокой износостойкостью при нормальных и повышенных температурах, коррозионной стойкостью и т.п. Наплавка может производиться как при изготовлении новых деталей, так и в ремонтно-восстановительных работах, существенно удлиняя срок эксплуатации деталей и узлов, обеспечивая этим высокий экономический эффект.
Существуют разнообразные способы наплавки.
1. Ручная дуговая электродами со стержнями и покрытиями специальных составов.
2. Автоматическая наплавка под флюсом. Электроды могут быть сплошного сечения и порошковые. Состав флюса, металл электрода и состав наполнителя определяют свойства наплавленного слоя.
3. Наплавка плавящимися и неплавящимися электродами в среде защитных газов. Свойства наплавленного слоя зависят от материала присадки или электрода.
4. Плазменная наплавка. Дуга может быть как прямого, так и косвенного действия. Можно плазменной струей оплавлять слой легированного порошка, предварительно нанесенный на поверхность детали.
5. Электрошлаковая, электронно-лучевая, лазерная наплавка, а также наплавка газокислородным пламенем.
Существенным показателем эффективности того или иного способа наплавки является степень перемешивания при наплавке основного металла и присадочного: чем она меньше, тем ближе будут свойства наплавленного слоя к заданным.
Напыление
При напылении расплавленные по всему объему или по поверхности частицы материала будущего покрытия направляются на поверхность нагретой заготовки. При соударении с поверхностью частица деформируется, обеспечивая хороший физический контакт с деталью. Характер взаимодействия частицы с материалом подложки, последующая кристаллизация частиц определяет качество адгезии покрытия с подложкой. Последующие слои формируются уже за счет связей частиц друг с другом, имеют чешуйчатое строение и существенно неоднородны.
По мере повышения стоимости объемного легирования и стремления получить требуемые эксплуатационные свойства более экономичным способом (легированием поверхности) напыление становится все более предпочтительным.
Для напыления используют источники тепла: газовое пламя, плазму, ионный нагрев, нагрев в печах, лазер и др.
Наибольшее распространение получили процессы газопламенного и плазменного напыления. Материал для напыления подается в пламя горелки или плазменную дугу в виде проволоки или порошка, где происходит нагрев и распыление частиц, которые тепловым потоком источника нагрева разгоняются и попадают на поверхность напыляемой детали. Иной способ формирования покрытий при нагреве в печах. В этом случае нагретая деталь контактирует с материалом покрытия, находящимся в виде порошка или газовой фазы. Получаемое таким методом покрытие имеет высокую адгезию к поверхности детали за счет активных диффузионных процессов, происходящих в период длительной выдержки в печи при высокой температуре.
Все большее распространение получают ионно-плазменные методы напыления износостойких и декоративных покрытий.
Пайка
Пайка – процесс получения неразъемного соединения заготовок без их расплавления путем смачивания поверхностей жидким припоем с последующей его кристаллизацией. Расплавленный припой затекает в специально создаваемые зазоры между деталями и диффундирует в металл этих деталей. Протекает процесс взаимного растворения металла деталей и припоя, в результате чего образуется сплав, более прочный, чем припой.
Образование соединения без расплавления основного металла обеспечивает возможность распая соединения.
Качество паяных соединений (прочность, герметичность, надежность и др.) зависят от правильного выбора основного металла, припоя, флюса, способа нагрева, типа соединения.
Припой должен хорошо растворять основной металл, обладать смачивающей способностью, быть дешевым и недефицитным. Припои представляют собой сплавы цветных металлов сложного состава. По температуре плавления припои подразделяют на особо легкоплавкие (температура плавления ниже 145 0С), легкоплавкие (145…450 0С), среднеплавкие (450…1100 0С) и тугоплавкие (выше 1050 0С). К особо легкоплавким и легкоплавким припоям относятся оловянно-свинцовые, на основе висмута, индия, олова, цинка, свинца. К среднеплавким и тугоплавким относятся припои медные, медно-цинковые, медно-никелевые, с благородными металлами (серебром, золотом, платиной). Припои изготавливают в виде прутков, листов, проволок, полос, спиралей, дисков, колец, зерен, которые укладывают в место соединения.
При пайке применяются флюсы для защиты места спая от окисления при нагреве сборочной единицы, обеспечения лучшей смачиваемости места спая расплавленным металлом и растворения металлических окислов. Температура плавления флюса должна быть ниже температуры плавления припоя. Флюсы могут быть твердые, пастообразные и жидкие. Для пайки наиболее применимы флюсы: бура, плавиковый шпат, борная кислота, канифоль, хлористый цинк, фтористый калий.
Пайку точных соединений производят без флюсов в защитной атмосфере или в вакууме.
В зависимости от способа нагрева различают пайку газовую, погружением (в металлическую или соляную ванну), электрическую (дуговая, индукционная, контактная), ультразвуковую.
В единичном и мелкосерийном производстве применяют пайку с местным нагревом посредством паяльника или газовой горелки.
В крупносерийном и массовом производстве применяют нагрев в ваннах и газовых печах, электронагрев, импульсные паяльники, индукционный нагрев, нагрев токами высокой частоты.
Перспективным направлением развития технологии пайки металлических и неметаллических материалов является использование ультразвука. Генератор ультразвуковой частоты и паяльник с ультразвуковым магнитострикционным вибратором применяются для безфлюсовой пайки на воздухе и пайке алюминия. Оксидная пленка разрушается за счет колебаний ультразвуковой частоты.
Процесс пайки включает: подготовку сопрягаемых поверхностей деталей под пайку, сборку, нанесение флюса и припоя, нагрев места спая, промывку и зачистку шва.
Детали для пайки тщательно подготавливаются: их зачищают, промывают, обезжиривают.
Зазор между сопрягаемыми поверхностями обеспечивает диффузионный обмен припоя с металлом детали и прочность соединения. Зазор должен быть одинаков по всему сечению.
Припой должен быть зафиксирован относительно места спая. Припой закладывают в месте спая в виде фольговых прокладок, проволочных контуров, лент, дроби, паст вместе с флюсом или наносят в расплавленном виде. При автоматизированной пайке – в виде пасты с помощью шприц-установок.
При возможности предусматриваются средства механизации – полуавтоматы и автоматы для газовой, электрической пайки.
Паяные соединения контролируют по параметрам режимов пайки, внешним осмотром, проверкой на прочность или герметичность, методами дефекто- и рентгеноскопии.
ЛЕКЦИЯ 14
Механическая обработка. Технологические возможности способов резания
Механическая обработка
Общая характеристика размерной обработки
Механическая обработка поверхностей заготовок является одной из основных завершающих стадий изготовления деталей машин.
Одна из актуальных задач машиностроения – дальнейшее развитие, совершенствование и разработка новых технологических методов обработки заготовок деталей машин, применение новых конструкционных материалов и повышение качества обработки деталей машин.
Наряду с обработкой резанием применяют методы обработки пластическим деформированием, с использованием химической, электрической, световой, лучевой и других видов энергии.
Классификация движений в металлорежущих станках
Обработка металлов резанием – процесс срезания режущим инструментом с поверхности заготовки слоя металла в виде стружки для получения необходимой геометрической формы, точности размеров, взаимного расположения и шероховатости поверхностей детали.
Чтобы срезать с заготовки слой металла, необходимо режущему инструменту и заготовке сообщать относительные движения. Инструмент и заготовку устанавливают на рабочих органах станков, обеспечивающих движение.
Движения, которые обеспечивают срезание с заготовки слоя материала или вызывают изменение состояния обработанной поверхности заготовки, называют движениями резания:
· Главное движение – определяет скорость деформирования материала и отделения стружки (Дг);
· Движение подачи – обеспечивает врезание режущей кромки инструмента в материал заготовки (Дs);
Движения могут быть непрерывными или прерывистыми, а по характеру – вращательными, поступательными, возвратно-поступательными.
Движения подачи: продольное, поперечное, вертикальное, круговое, окружное, тангенциальное.
В процессе резания на заготовке различают поверхности (рис.19.1.а):
· обрабатываемую поверхность (1);
- обработанную поверхность (3);
· поверхность резания (2).
Установочные движения – движения, обеспечивающие взаимное положение инструмента и заготовки для срезания с нее определенного слоя металла.
Вспомогательные движения – транспортирование заготовки, закрепление заготовки и инструмента, быстрые перемещения рабочих органов.
Рис.19.1 Схемы обработки заготовок: а – точением; б – шлифованием на круглошлифовальном станке; в – сверлением
Режимы резания, шероховатость поверхности
При назначении режимов резания определяют скорости главного движения резания и подачи, и глубину резания.
Скоростью главного движения – называют расстояние, пройденное точкой режущей кромки инструмента в единицу времени (м/с).
Для вращательного движения:
,
где: – максимальный диаметр заготовки (мм); – частота вращения (мин-1).
Для возвратно-поступательного движения:
,
где: – расчетная длина хода инструмента; – число двойных ходов инструмента в минуту; – коэффициент, показывающий соотношение скоростей рабочего и вспомогательного хода.
Подача - путь точки режущей кромки инструмента относительно заготовки в направлении движения подачи за один ход заготовки или инструмента.
В зависимости от технологического метода обработки подачу измеряют:
мм/об – точение и сверление;
мм/дв. ход – строгание и шлифование.
Глубина резания( ) – расстояние между обрабатываемой и обработанной поверхностями заготовки, измеренное перпендикулярно к обработанной поверхности (мм).
Шероховатость поверхности – совокупность неровностей с относительно малыми шагами.
Шероховатость является характеристикой качества поверхностного слоя заготовки. Она оценивается несколькими параметрами, в частности критерием .
- среднее арифметическое отклонение профиля (среднее арифметическое абсолютных значений отклонений профиля) в пределах определенной базовой длины обработанной поверхности.
Допустимые значения шероховатости поверхностей деталей указываются на чертежах.
Значение параметра для разных технологических методов обработки лежат в пределах, мкм:
- для предварительной черновой обработки – 100…22,5 ;
- для чистовой обработки – 6,3…0,4 ;
- для отделочной и доводочной обработки – 0,2…0,012.
Станки для обработки резанием
Классификация металлорежущих станков
По общности технологического метода обработки различают станки: токарные, фрезерные, сверлильные и др.
По назначению различают станки: широкоуниверсальные, универсальные, широкого назначения, специализированные, специальные.
Универсальные станки обрабатывают разнотипным инструментом различающиеся по размерам, форме и расположению поверхностей заготовки.
Широкоуниверсальные – предназначены для выполнения особо широкого разнообразия работ.
Станки широкого назначения характеризуются однотипностью применяемого инструмента.
Специализированные станки предназначены для обработки однотипных заготовок различных размеров.
Специальные станки предназначены для выполнения определенных видов работ на заготовках одинаковых размеров и конфигурации.
- По массе: легкие (до 1т ), средние (до 10т ), тяжелые (свыше 10т ) и уникальные (свыше 100т ).
- По степени автоматизации: с ручным управлением, полуавтоматы и автоматы.
- По компоновке основных рабочих органов: горизонтальные и вертикальные.
В общегосударственной единой системе (ЭНИМС) станки разделяются на 10 групп и 10 типов. В группы объединены станки одинаковые или схожие по технологическому методу обработки. Типы характеризуют их назначение, степень автоматизации, компоновку.
Технологические возможности способов резания
Точение
Точение является основным способом обработки поверхностей тел вращения.
Процесс резания осуществляется на токарных станках при вращении обрабатываемой заготовки (главное движение) и перемещении резца (движение подачи).
Движение подачи осуществляется:
· параллельно оси вращения заготовки (продольная);
- перпендикулярно оси вращения заготовки (поперечная);
· под углом к оси вращения заготовки (наклонная).
Схемы обработки поверхностей заготовки точением представлены на рис. 19.2.
С помощью точения выполняют операции: обтачивание – обработку наружных поверхностей (рис19.2.а); растачивание – обработку внутренних поверхностей (рис.19.2.б); подрезание – обработку торцевых поверхностей (рис.19.2.в); резку – разрезание заготовки на части ( рис.19.2.г); резьбонарезание – нарезание резьбы (рис.19.2.д).
По технологическим возможностям точение условно подразделяют на: черновое, получистовое, чистовое, тонкое.
Рис. 19.2. Схемы обработки поверхностей заготовки точением
В качестве режущего инструмента при точении используют резцы.
Главным принципом классификации резцов является их технологическое назначение.
Различают резцы:
- проходные – для обтачивания наружных цилиндрических и конических поверхностей;
- расточные – проходные и упорные – для растачивания глухих и сквозных отверстий;
- отрезные – для отрезания заготовок;
- резьбовые – для нарезания наружных и внутренних резьб;
- фасонные – для обработки фасонных поверхностей;
- прорезные – для протачивания кольцевых канавок;
- галтельные – для обтачивания переходных поверхностей между ступенями валов по радиусу.
По характеру обработки – черновые, получистовые, чистовые.
По направлению движения подачи – правые и левые (справа на лево и слева на право).
По конструкции – целые, с приваренной или припаянной пластиной, со сменными пластинами.
Сверление
Сверление является основным способом получения глухих и сквозных цилиндрических отверстий в сплошном материале заготовки.
Дата добавления: 2016-02-04; просмотров: 685;