Глава 17 Конденсатор Фролова

 

Первые эксперименты, в домашней лаборатории, были проведены мной в 1991–1992 годах, как ни странно, еще до знакомства с работами Брауна. В то время, я поставил задачу получения движущей силы путем создания асимметрии кулоновских сил. Опубликовав результаты экспериментов в 1994 году, я получил много писем, отзывов и информации по аналогам, в том числе, по работам Томаса Т. Брауна.

Первоначально, мной была предложена схема, показанная на рис. 72. Это схема «конденсатора Фролова» из публикации 1994 года [32].

 

Рис. 72. Конденсатор Фролова, 1994 год. Асимметрия взаимодействия заряженных тел

В данном варианте, элементы конструкции (пластины) заряжены разноименно, и размещены так, как показано на рис. 72. Между ними возникают асимметричные силы электростатического притяжения. Сумма сил F12, действующих на вертикальный заряженный элемент, при векторном суммировании, равна нулю. Сумма сил F21, действующих на горизонтальные электроды, а через них, на корпус движителя, не равна нулю, и это обеспечивает движущую силу. Важно учесть, что силы действуют между плоскими электростатически заряженными элементами. В электростатике, кулоновские силы всегда направлены перпендикулярно плоской поверхности.

Позже, была опубликована [33] другая схема асимметричного конденсатора Фролова, ее вариант показан на рис. 73. В классическом плоском конденсаторе (слева на рис. 73), платы расположены параллельно и притягиваются друг к другу с равными и противонаправленными силами. Сумма сил, действующая на систему в целом, равна нулю.

 

Рис. 73. Обычный конденсатор (слева) и конденсатор Фролова (справа)

В «конденсаторе Фролова» с Т‑образным диэлектриком, показанном на рис. 73, два разноименно заряженных взаимодействующих тела (плоские или сферические) расположены в одной плоскости, и разделены «диэлектрической стеной», чтобы исключить электрический пробой вдоль минимального расстояния между электродами. Благодаря этому, формируется ненулевой суммарный вектор силы взаимодействия заряженных тел. Сферические или полусферические (выгнутые) заряженные тела удобнее, поскольку уменьшается утечка зарядов. У плоских электродов, происходит утечка зарядов с острых ребер пластин. Хорошие эффекты дает применение цилиндрических электродов, с закругленными торцами. Впрочем, торцы электродов можно изолировать, для уменьшения утечки. Наблюдать эффект взаимного притяжения в «конденсаторе Фролова» интереснее, если два взаимодействующих заряженных тела закреплены на диэлектрическом основании с помощью упругих элементов, способных растягиваться. В такой конструкции, при включении источника разности потенциалов, заряженные тела сдвигаются по направлению к перегородке и заметно поднимаются, что делает эффект (наличие подъемной силы) очевидным.

Таким образом, геометрия диэлектрика, или особая геометрия и расположение заряженных элементов конструкции, обеспечивают условия создания активной движущей силы. При конструировании таких устройств, необходимо учесть, что эти силы электростатического взаимодействия всегда перпендикулярны заряженной поверхности.

В настоящее время, «конденсатор Фролова» более известен, как сочетание двух плоских кольцевых металлических электродов, разделенных цилиндрической диэлектрической перегородкой, рис. 74. В английском языке, этот вариант конструкции называют «Frolov’s Hat» – «шапка Фролова». Отметим, что диэлектрический диск и цилиндрическая перегородка должны быть выполнены из цельного куска диэлектрического материала, иначе, между электродами может произойти пробой через щель. Размеры устройства зависят от используемого напряжения между электродами. Повышение напряжения более 10 кВ нежелательно, так как это увеличивает потери на ионизацию, растет ток потребления.

 

Рис. 74. Вариант конденсатора Фролова с цилиндрической перегородкой

В развитие данной темы, предлагается вариант конструкции, которую могут выполнить современные производители микроэлектроники, с небольшими размерами элементов, например, менее одного миллиметра, рис. 75.

 

Рис. 75. Миниатюризация и пакетирование элементов

Известно, что электрический пробой наступает в воздушном зазоре при напряжении около 1000 Вольт на миллиметр. Малые размеры позволят работать при малых напряжениях, без ионизации воздуха. Кроме того, кулоновские силы быстро растут при уменьшении расстояния между телами, квадратичная зависимость. Для оптимизации схем, показанных на рис. 73 – рис. 75, можно использовать жидкий диэлектрик. Ошибочно полагать, что заряженные элементы конструкции могут быть только металлическими электродами, как у Брауна. В большинстве предлагаемых мной конструкций электрокинетических движителей, могут применяться заряженные диэлектрики или электреты. Металлические элементы тоже дают некоторые силовые эффекты, но заряды с них быстро «стекают в воздух». Данный побочный процесс реактивный, и именно он искажает основную идею получения активной силы. Он может быть сильнее основного эффекта. Необходимо избегать этого побочного процесса конструктивными методами, например, придавая электродам сферическую или цилиндрическую форму, обеспечивая полировку поверхности и т. п.

На рис. 76 показан вариант конструкции, предложенной в 1994 году [32].

 

Рис. 76. Движитель Фролова с одноименно заряженными цилиндрическими элементами

В данном случае, мы рассматриваем кулоновские силы между несколькими диэлектрическими одноименно заряженными элементами: плоским электродом (основанием) и множеством цилиндрических заряженных элементов (трубок). Благодаря тому что силы, действующие на поверхность электрически заряженного диэлектрика, всегда перпендикулярныы поверхности, силы F21, действующие на пластину – основание, сонаправлены и суммируются. В то же время, силы, действующие на каждый цилиндрический элемент F12, с разных сторон, взаимно компенсируются. Эти особенности предлагается использовать для конструирования электрических движителей, создающих активную силу за счет ненулевой векторной суммы кулоновских сил. Современные нанотехнологии позволяют реализовать концепцию, показанную на рис. 76, с помощью диэлектрических элементов малого размера, 100–200 нм. При таких размерах, кулоновские силы будут эффективно действовать на малых расстояниях при небольших напряжениях.

В примитивных экспериментах, которые были проведены в моей лаборатории, была обнаружена небольшая сила, на уровне 10‑5 (N). В 1996–1998 годах я докладывал об данных результатах на конференциях, отправлял документы по данному проекту в ЦНИИ имени Хруничева, но не нашел интереса российских организаций к данной теме. В 1998 году, в Санкт‑Петербург приезжали представители авиационного департамента корпорации Тойота, которые были ознакомлены с предлагаемым принципом и экспериментами. Позже, после 2002 года, мою лабораторию ООО «ЛНТФ» в Санкт‑Петербурге посещали представители российского военного исследовательского института, но мои примитивные эксперименты с «заряженными шариками» не убедили их в перспективности предлагаемого метода. Буду рад развитию данной темы с заинтересованным заказчиком, имеющим собственную научно‑техническую базу.

Наиболее интересен тот факт, что подъемная (движущая) сила сохраняется при выключенном источнике питания, постепенно спадая, по мере саморазряда конденсатора. Минимизируя токи утечки через диэлектрик, а также, снижая рабочее напряжение за счет миниатюризации элементов конструкции, мы можем устранить эффекты ионизации и потерь заряда. Сохранение разности потенциалов обеспечивает наличие движущей силы. Электреты, как особый тип диэлектрика, могут использоваться в таких конструкциях. Это позволит получать активную силу без затрат мощности от первичного источника, пока электреты сохраняют свой заряд. Современные электреты могут сохранять заряд годами. Перспективы интересные!

В Природе, встречается сочетание статического электричества и удивительных аэродинамических качеств, например, у бабочек, пчел, шмелей и т. п. Кстати, материал, из которого сделана их конструкция, не имеет металлических элементов, а является диэлектриком, и обладает электретными свойствами. Электрический заряд на поверхности «живого диэлектрика», в данном случае, обусловлен трением движущихся частей, и движением воздуха.

Вернемся к идеям Брауна. Задача создания движущей силы решается им не только за счет геометрической асимметрии элементов конструкции. Сила, как писал Браун, действует «в сторону большей интенсивности силовых линий электрического поля». Именно этот эффект показан на рис. 69.

В патенте Брауна № 3187206, есть упоминание о том, что движущую силу можно получить за счет асимметрии электродов, а также, «за счет прогрессивно изменяющийся диэлектрической проницаемости материала, находящегося между электродами». Браун также отметил возможность использования градиента электрической проводимости и полупроводниковых материалов, но эти методы создания движущей силы более энергозатратные, чем «градиентная электростатика».

Метод, основанный на градиенте свойств диэлектрика, представляется мне более технологичным и перспективным, чем геометрическая асимметрия, показанная на рис. 72 – рис. 76. Рассмотрим данный вопрос подробнее.

В курсе теории диэлектриков, есть интересное замечание о силе, действующей на частицы вещества, находящихся на границе раздела двух диэлектриков, имеющих различную диэлектрическую проницаемость, рис. 77. Различные свойства диэлектрической среды задают разное по величине электрическое поле E1 и E2, в области между двумя пластинами конденсатора.

 

Рис. 77. Граница раздела двух сред с разной диэлектрической проницаемостью

Эта сила F действует в сторону максимальной напряженности электрического поля E1, и «направлена по нормали к поверхности раздела диэлектриков», как пишет Б.М. Тареев в учебнике по диэлектрикам [34]. Учитывая это важное замечание по поводу нормального направления вектора силы, можно конструировать силовые установки активного (нереактивного) типа, в которых создается ненулевой суммарный вектор действующих электрических сил.

Напряженность электрического поля, как известно, есть градиент электрического потенциала, убывающего с увеличением расстояния от поверхности заряженного тела. Естественный градиент электрического потенциала, в частности, создаваемый вокруг заряженного шарика, показан на рис. 78. Частица бумаги, например, притягивается в поверхности заряженного шарика, именно благодаря этому градиенту электрического потенциала: она движется в сторону большей интенсивности силовых линий.

 

Рис. 78. Притяжение частицы к заряженному шарику в естественном электрическом поле

Создавая искусственный градиент потенциала, за счет свойств среды, окружающей заряженное тело, представляется возможным получить интересные эффекты. На рис. 79 показан вариант предлагаемой конструкции, в которой выпуклая поверхность высоковольтного электрода покрыта градиентным диэлектриком, в котором послойно или плавно меняется величина диэлектрической проницаемости, при удалении от поверхности электрода. Наружный слой диэлектрика, для наших целей, должен иметь минимальное значение диэлектрической проницаемости, а внутренний слой – максимальное значение. В таком случае, около электрода величина потенциала будет минимальная, а при удалении от поверхности электрода, значение потенциала будет не уменьшаться, а увеличиваться. Это создает эффект «обратного электрического поля».

 

Рис. 79. Элемент активного движителя с градиентным диэлектриком

Напомню, что чем меньше диэлектрическая проницаемость среды, тем сильнее в данной области пространства напряженность электрического поля. При определенных условиях, на частицу, находящуюся в области градиентного диэлектрика, действует сила, направленная в сторону диэлектрика с меньшей величиной диэлектрической проницаемости. В обычном электрическом поле, как мы рассмотрели на рис. 78, частицы притягиваются к электроду, стремясь перейти в область максимальной напряженности поля. В «обратном электрическом поле», рис. 79, частицы вещества диэлектрика будут стремиться прочь от электрода, так как искусственно созданный градиент электрического потенциала заставляет их смещаться в сторону большей интенсивности силовых линий. Уменьшение величины диэлектрической проницаемости, которое может быть создано плавно или слоями, в толще диэлектрика, с увеличением расстояния от поверхности электрода. Особые условия состоят в том, что мы должны не только уменьшить или компенсировать естественное уменьшение величины электрического потенциала, а добиться того, чтобы с расстоянием от заряженной поверхности изменение напряженности поля происходил быстрее, чем происходит естественное уменьшение потенциала, при удалении от электрода. Как писал Томас Браун, необходимо создать «прогрессивно изменяющуюся» диэлектрическую проницаем, ость.

Как известно, закон Кулона имеет квадратичную функцию. Следовательно, функция изменений потенциала с расстоянием от электрода, которую мы задаем с помощью конструктивного изменения диэлектрической проницаемости вещества диэлектрика, должна иметь крутизну более, чем квадратичная функция. В таком случае, для частиц диэлектрика, находящихся в толще диэлектрика, направление увеличения электрического потенциала будет обращено в сторону от заряженной поверхности. При такой ситуации, на них будет действовать сила, направленная в сторону максимальной величины потенциала, то есть, наружу от электрода.

Технологическая задача создания многослойного диэлектрика, или материала с прогрессивным градиентом диэлектрической проницаемости, достаточно сложная, но перспективная. Применение данной технологии в энергетике и оборонной промышленности имеет большие перспективы. Такие материалы, по моим расчетам, могут обеспечить активные действующие силы величиной около 100 тонн на квадратный метр поверхности специального конденсатора, при напряженности электрического поля около 10 киловольт. Такие мощные силовые эффекты, без учета побочной ионизации воздуха, должны объясняться некоторой работоспособной теорией.

Коротко по теории процесса. Существует несколько теоретических подходов, и все они опираются на предположение о наличии среды в вакууме, которая, при воздействии на нее, может приобретать некоторую структуру, поскольку она имеет определенные физические свойства, в том числе, плотность энергии.

Закон Кулона в квантовой электродинамике описывается, как обмен энергией виртуальных фотонов, происходящий между заряженными частицами. Аналогичные идеи рассматривает Берден [28]. На рис. 80 показана схема взаимодействия двух электрически заряженных тел, с точки зрения эфиродинамики.

 

 

Рис. 80. Схема взаимодействия электрически заряженных тел

Из анализа векторных сумм данных взаимодействующих тел, мы получаем простой, но важный вывод: заряженное тело в присутствии другого заряженного тела окружено градиентным электрическим полем, что и является причиной возникновения сил отталкивания или притяжения. Важно понять, что силовое взаимодействие происходит не между телами, а между каждым телом в отдельности и окружающим его частицами эфирной среды, которые передают телу свой импульс, что воспринимается нами, как электрическое поле.

В квантовой электродинамике, говорят несколько другими словами: «поляризация вакуума» и «образование виртуальных электрон‑позитронных пар». Суть дела это не меняет: эфирное давление, то есть, суммарный импульс частиц эфира, действующий на электрически заряженное тело с разных сторон, может быть симметричный (изотропный) или несимметричный (анизотропный).

Обычно, суммарный импульс симметричен, и движущей силы нет. Это не является обязательным условием. Активная сила, действующая на заряженное тело, может быть создана для уединенного заряженного тела за счет его особой формы, или за счет анизотропии свойств диэлектрика вокруг него, рис. 81.

 

Рис. 81. Уединенное заряженное тело, окруженное разными диэлектриками

В данном случае, конструктивно создаются условия для пары процессов: благодаря асимметрии структуры среды возникает движущая сила в пространстве, и соответствующий ей хрональный эффект, как движущая сила по времени. Проявление хронального эффекта, при малой мощности процесса, должно детектироваться, как температурный градиент. Предлагаемая здесь концепция была рассмотрена ранее в [35]. Математическое обоснование было предложено Профессором Афанасиусом Нассикас, Университет города Ларисса, Греция [36].

Для критиков, утверждающих, что «статика не может создать движение», уточню важный нюанс: не забывайте о эфиродинамике и силах упругости, а также о возможности импульсного режима работыи Импульсный источник питания позволяет регулировать силу тяги.

Любое вещество «соединено с эфиром», и упругость вещества является электромагнитным эфиродинамическим явлением: элементарные частицы вещества притягиваются или отталкиваются друг от друга, при упругом взаимодействии их электрических и магнитных полей. В свою очередь, электрические и магнитные поля есть определенные процессы в упругой эфирной среде. Упругие деформации или волны сжатия и разряжения упругой эфирной среды мы называем полями. В конструкциях асимметричных конденсаторов, в том числе, показанной на рис. 81, необходимо обеспечить упругое взаимодействие со средой, как и в механических устройствах, рассмотренных нами ранее.

Итак, градиентный упругий диэлектрик – это способ создания активной силы, действующей за счет градиента давления эфира, причем, силы, не требующей затрат энергии на ее поддержание. Регулировка величины суммарной движущей силы, в данном методе, легко достигается изменениями в характеристиках импульсного режима работы. Регулировка суммарной движущей силы, которая возникает при использовании асимметричных электретных материалов, может обеспечиваться за счет механического поворота части элементов движителя. Например, полная тяга создаются при 100 % согласованном направлении всех элементов, а направив 50 % элементов против другой половины элементов, получим полную компенсацию силы тяги.

В России, по данной теме, была подана заявка на данное изобретение: «Способ и устройство для создания движущей силы», заявка № 2004105178 от 20.02.2004, автор Фролов Александр Владимирович. К сожалению, был получен отказ по известной причине: «движение тел за счет внутренних сил невозможно». Предлагается повторно запатентовать предлагаемые ключевые технические решения на международном уровне, для их коммерциализации.

Повторю, что, в данной конструкции, не требуется токов проводимости для создания активной (нереактивной) действующей силы. С такими движителями можно не только летать в космос, но и вращать электрогенераторы, с эффективностью «тысячи процентов», как предлагал Томас Браун в 1927 году.

Важность данного направления для космонавтики очевидна: вывод грузов на любую орбиту будет иметь себестоимость в десятки раз ниже, чем сегодня.

Применение в транспорте, вероятно, начнется с авиации. Представьте себе пассажирский самолет, не требующий топлива, с первичным источником энергии в виде обычного аккумулятора, и неограниченной дальностью перелета. Другой вариант: боевой истребитель, не требующий топлива, способный выполнять любые задачи, без ограничений по дальности полета. Очевидно, что существенный прогресс, при внедрении таких технологий, ожидается во всей оборонной промышленности, в связи с новыми возможностями конструирования боевой техники и средств доставки, качественно превосходящих ракеты.

Надеюсь, что читатель не очень утомлен рассуждениями о трудно осязаемых эфиродинамических явлениях, происходящих в асимметричных конденсаторах. Предлагаю перейти к новой главе, в которой будет показан метод создания движущей силы за счет отбора энергии у молекул воздуха, или другой среды. Это поможет понять концепцию асимметричных конденсаторов, создающих аналогичные силовые эффекты, но за счет отбора энергии у эфирной среды. Последствия такого энергообмена должны быть такие же, как и в газодинамике.

 








Дата добавления: 2016-02-02; просмотров: 4295;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.014 сек.