Технологические схемы и компоновка АЭС
Технологические схемы АЭС весьма разнообразны и определяются как типом реактора, так и числом контуров. Технологическая схема и компоновка оборудования первого контура двухконтурной АЭС с реактором на тепловых нейтронах показана на рис. 3.24.
Ядерное топливо, находящееся в ТВЭЛах определенной формы, доставляется в контейнерах 1 на электростанцию и с помощью перегрузочного крана 3 загружается в активную зону реактора 4. Кассеты с отработавшими ТВЭЛами помещаются в бассейн 2, где выдерживаются в течение определенного времени. Когда радиоактивность горючего и материала кассет уменьшается до нормативных значений, кассеты в контейнерах вывозят на перерабатывающие заводы.
Рис. 3.24. Технологическая схема первого контура АЭС:
1 – контейнер; 2 – бассейн; 3 – перегрузочный кран; 4 – реактор;
5 – мостовой кран реакторного зала; 6 – главная задвижка; 7 – главный циркуляционный насос; 8 – парогенератор;
9 – трубопроводы питательной воды;
10 – трубопроводы вторичного пара
Теплота, выделяющаяся в реакторе и воспринятая теплоносителем, передается рабочей среде в парогенераторе (ПГ) 8. При трехконтурной схеме между теплоносителем первого контура и рабочей средой имеется еще промежуточный контур (см. рис. 3.21, в).
Пар, образовавшийся в ПГ (при двухконтурных и трехконтурных схемах) или в реакторе (при одноконтурной схеме), направляется по паропроводу к турбине. На схеме первого контура двухконтурной АЭС (см. рис. 3.24) пар направляется к турбине по трубопроводу 10, питательная вода подается в ПГ по линии 9.
Для предохранения персонала АЭС от радиационного облучения реактор окружают биологической защитой, основным материалом для которой служат бетон, вода, песок. Оборудование реакторного контура должно быть полностью герметичным. Предусматривается система контроля мест возможной утечки теплоносителя, принимают меры, чтобы появление неплотностей и разрывов контура не приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружающей местности. Оборудование реакторного контура обычно устанавливают в герметичных боксах, которые отделены от остальных помещений АЭС биологической защитой и при работе реактора не обслуживаются. Радиоактивный воздух и небольшое количество паров теплоносителя, обусловленное наличием протечек из контура, удаляют из необслуживаемых помещений АЭС специальной системой вентиляции, в которой для исключения возможности загрязнения атмосферы предусмотрены очистные фильтры и газгольдеры выдержки. За выполнением правил радиационной безопасности персоналом АЭС следит служба дозиметрического контроля.
При авариях в системе охлаждения реактора для исключения перегрева и нарушения герметичности оболочек
ТВЭЛов предусматривают быстрое (в течение несколько секунд) глушение ядерной реакции; аварийная система расхолаживания имеет автономные источники питания.
Наличие биологической защиты, систем специальной вентиляции и аварийного расхолаживания и службы дозиметрического контроля позволяет полностью обезопасить обслуживающий персонал АЭС от вредных воздействий радиоактивного облучения.
Оборудование машинного зала АЭС аналогично оборудованию машинного зала ТЭС. Отличительная особенность большинства АЭС – использование пара сравнительно низких параметров, насыщенного или слабо перегретого.
При этом для исключения эрозионного повреждения лопаток последних ступеней турбины частицами влаги, содержащейся в пару, в турбине устанавливают сепарирующие устройства. Иногда необходимо применение выносных сепараторов и промежуточных перегревателей пара. В связи с тем, что теплоноситель и содержащиеся в нем примеси при прохождении через активную зону реактора активируются, конструктивное решение оборудования машинного зала и системы охлаждения конденсатора турбины одноконтурных АЭС должно полностью исключать возможность утечки теплоносителя. На двухконтурных АЭС с высокими параметрами пара подобные требования к оборудованию машинного зала не предъявляются.
В число специфичных требований к компоновке оборудования АЭС входят: минимально возможная протяженность коммуникаций, связанных с радиоактивными средами, повышенная жесткость фундаментов и несущих конструкций реактора, надежная организация вентиляции помещений.
В реакторном зале размещены: реактор с биологической защитой, запасные ТВЭЛы и аппаратура контроля. АЭС скомпонована по блочному принципу реактор–турбина. В машинном зале расположены турбогенераторы и обслуживающие их системы. Между машинным и реакторным залами размещены вспомогательное оборудование и системы управления станцией.
В большинстве промышленно развитых стран (Россия, США, Англия, Франция, Канада, Германия, Япония и др.) мощность действующих и строящихся АЭС к 2000 году доведена до десятков гигаватт. По данным Международного атомного агентства ООН установленная мощность всех АЭС в мире к 2000 году превысила 300 ГВт.
За годы, прошедшие со времени пуска в эксплуатацию первой АЭС, было создано несколько конструкций ядерных реакторов, на основе которых началось широкое развитие атомной энергетики в нашей стране.
АЭС, являющиеся наиболее современным видом электростанций, имеют ряд существенных преимуществ перед другими видами электростанций: при нормальных условиях функционирования они абсолютно не загрязняют окружающую среду, не требуют привязки к источнику сырья и, соответственно, могут быть размещены практически везде. Новые энергоблоки имеют мощность практически равную мощности средней ГЭС, однако коэффициент использования установленной мощности на АЭС (80 %) значительно превышает этот показатель у ГЭС или ТЭС. Об экономичности и эффективности атомных электростанций может говорить тот факт, что из 1 кг урана можно получить столько же теплоты, сколько при сжигании примерно 3000 т каменного угля.
Значительных недостатков АЭС при нормальных условиях функционирования практически не имеют. Однако нельзя не заметить опасность АЭС при возможных форс–мажорных обстоятельствах: землетрясениях, ураганах и т.п., так как здесь старые модели энергоблоков представляют потенциальную опасность радиационного заражения территорий из–за неконтролируемого перегрева реактора.
Основной конструктивной деталью гетерогенной активной зоны является ТВЭЛ, в значительной мере определяющий ее надежность, размеры и стоимость. В энергетических реакторах, как правило, используются стержневые ТВЭЛы с топливом в виде прессованных таблеток двуокиси урана, заключенных в оболочку из стали или циркониевого сплава. ТВЭЛы для удобства собираются в тепловыделяющие сборки (ТВС), которые устанавливаются в активной зоне ядерного реактора.
Большие тепловые потоки, проходящие через поверхность ТВЭЛов, и значительная энергонапряженность топлива требуют наличия исключительно высокой стойкости и надежности ТВЭЛов. Помимо этого, условия работы ТВЭЛов осложняются высокой рабочей температурой, достигающей 300–600 °С на поверхности оболочки, возможностью тепловых ударов, вибрацией, наличием потока нейтронов (флюенс достигает 102 нейтрон/м2).
К ТВЭЛам предъявляются высокие технические требования:
1) простота конструкции;
2) механическая устойчивость и прочность в потоке теплоносителя, обеспечивающая сохранение размеров и герметичности;
3) малое поглощение нейтронов конструкционным материалом ТВЭЛа и минимум конструкционного материала в активной зоне;
4) отсутствие взаимодействия ядерного топлива и продуктов деления с оболочкой ТВЭЛов, теплоносителем и замедлителем при рабочих температурах.
Геометрическая форма ТВЭЛа должна обеспечивать требуемое соотношение площади поверхности и объема и максимальную интенсивность отвода теплоты теплоносителем от всей поверхности ТВЭЛа, а также гарантировать большую глубину выгорания ядерного топлива и высокую степень удержания продуктов деления. ТВЭЛы должны обладать радиационной стойкостью, иметь требуемые размеры и конструкцию, обеспечивающие возможность быстрого проведения перегрузочных операций; обладать простотой и экономичностью регенерации ядерного топлива и низкой стоимостью.
В целях безопасности надежная герметичность оболочек ТВЭЛов должна сохраняться в течение всего срока работы активной зоны (3–5 лет) и последующего хранения отработавших ТВЭЛов до отправки на переработку (1–3 года). При проектировании активной зоны необходимо заранее установить и обосновать допустимые пределы повреждения ТВЭЛов (количество и степень повреждения). Активная зона проектируется таким образом, чтобы при работе на протяжении всего ее расчетного срока службы не превышались установленные пределы повреждения ТВЭЛов. Выполнение указанных требований обеспечивается конструкцией активной зоны, качеством теплоносителем, характеристиками и надежностью системы теплоотвода. В процессе эксплуатации возможно нарушение герметичности оболочек отдельных ТВЭЛов. Различают два вида такого нарушения: образование микротрещин, через которые газообразные продукты деления выходят из ТВЭЛа в теплоноситель (дефект типа газовой плотности); возникновение дефектов, при которых возможен прямой контакт топлива с теплоносителем.
Условия работы ТВЭЛов в значительной мере определяются конструкцией активной зоны, которая должна обеспечивать проектную геометрию размещения ТВЭЛов и необходимое с точки зрения температурных условий распределение теплоносителя. Через активную зону при работе реактора должен поддерживаться стабильный расход теплоносителя, гарантирующего надежный теплоотвод.
Активная зона должна быть оснащена датчиками внутриреакторного контроля, которые дают информацию о распределении мощности, нейтронного потока, температурных условиях ТВЭЛов и расходе теплоносителя.
Активная зона энергетического реактора должна быть спроектирована так, чтобы внутренний механизм взаимодействия нейтронно–физических и теплофизических процессов при любых возмущениях коэффициента размножения устанавливал новый безопасный уровень мощности. Практически безопасность ядерной энергетической установки обеспечивается, с одной стороны, устойчивостью реактора (уменьшением коэффициента размножения с ростом температуры и мощности активной зоны), а с другой стороны – надежностью системы автоматического регулирования и защиты.
С целью обеспечения безопасности конструкция активной зоны и характеристики ядерного топлива должны исключать возможность образования критических масс делящихся материалов при разрушении активной зоны и расплавлении ядерного топлива. При конструировании активной зоны должна быть предусмотрена возможность введения поглотителя нейтронов для прекращения цепной реакции в любых случаях, связанных с нарушением охлаждения активной зоны.
Активная зона, содержащая большие объемы ядерного топлива для компенсации выгорания, отравления и температурного эффекта, имеет как бы несколько критических масс. Поэтому каждый критический объем топлива должен быть обеспечен средствами компенсации реактивности. Они должны размещаться в активной зоне таким образом, чтобы исключить возможность возникновения локальных критических масс.
Дата добавления: 2016-02-02; просмотров: 1434;