ЗАРОЖДЕНИЕ ТЕОРЕТИЧЕСКИХ ОСНОВ ЭЛЕКТРОТЕХНИКИ

 

Как известно, процессы в электрической цепи определяются скалярными величинами – электродвижущей силой (или напряжением) и током. Напомним, что понятие об электродвижущей силе ввел в обращение А. Вольта. После первых качественных и количественных исследований в 20‑е годы XIX в. стали формироваться физические основы теории электрических токов и основы расчетов электрических цепей (А. Ампер, Г.С. Ом). Еще до Г.Р. Кирхгофа разными учеными находились токи в разветвлениях цепей (например, Э.Х. Ленцем). Но только Г.Р. Кирхгофу в 1845–1847 гг. удалось сформулировать известные топологические законы, названные его именем, которые легли в основу всех последующих методов расчета цепей.

В 1845 г. немецкий физик‑теоретик Франц Эрнст Нейман (1798–1895 гг.) дал математическое выражение закона электромагнитной индукции.

Английский физик Чарльз Уитстон (1802–1875 гг.) в связи с работами по усовершенствованию телеграфа искал способы измерения сопротивлений. В результате он создал знаменитый «мостик Уитстона», достоинством которого являлась независимость состояния равновесия от напряжения источника питания. В 1840 г. он показывал свое устройство Б.С. Якоби, а в 1843 г. дал описание своего «мостика» в статье. Для изменения сопротивления одного из плечей мостика Ч. Уитстон применил регулируемые резисторы, которые он назвал реостатами. Позднее (в 1860 г.) Вернер Сименс сконструировал магазин сопротивлений.

Герман Людвиг Гельмгольц ввел в 1853 г. в теорию цепей известный ранее в физике принцип суперпозиции, на основе которого были построены важные теоремы электрических цепей, включая теорему об эквивалентном источнике (Гельмгольца – Тевенена). Гельмгольц же впервые получил уравнение переходного процесса в цепи при ее подключении к источнику, рассмотрел постоянные времени электрической цепи. Выдающийся английский ученый Уильям Том сон, впоследствии лорд Кельвин (1824–1907 гг.) в 1853 г. дал расчет колебательного процесса и установил связь между частотой собственных колебаний, индуктивностью и емкостью.

Д.К. Максвеллом был разработан метод контурных токов, доказана теорема взаимности. Постепенно формировался практически весь арсенал методов расчета (включая эквивалентные преобразования) цепей постоянного тока.

После открытия электромагнитной индукции внимание ученых в значительной степени переключилось с гальванических токов, когда главными объектами исследований были сами гальванические элементы, процессы электролиза, на индукционные токи, когда наибольший интерес стали вызывать явления электромагнетизма.

Здесь особая роль принадлежит Э.Х. Ленцу [2.9; 2.10].

В своем докладе Петербургской Академии наук 29 ноября 1833 г. Э.Х. Ленц, находясь под большим впечатлением от работ по электромагнитной индукции М. Фарадея, дал свою знаменитую формулировку закона, названного его именем: «Если металлический проводник движется поблизости от гальванического тока или магнита, то в нем возбуждается гальванический ток такого направления, что он мог бы обусловить, в случае неподвижности данного проводника, его перемещение в противоположную сторону, причем предполагается, что такое перемещение может происходить только в направлении движения или в направлении, прямо противоположном».

Очевидно, что в этой формулировке заключена и идея обратимости электрических машин, развитая позднее Б.С. Якоби.

Э.Х. Ленц был одним из основоположников теории магнитоэлектрических машин. Ему принадлежит открытие и объяснение явления реакции якоря (1847 г.) и установление необходимости сдвигать щетки с геометрической нейтрали; он впервые изучал смещение фазы тока относительно фазы напряжения (1853 г.), придумал коммутатор для изучения формы кривой индуцированного тока (1857 г.). Им было установлено условие режима максимальной полезной мощности источника энергии, когда внутреннее сопротивление источника равно сопротивлению внешней цепи. Широко известна работа Э.Х. Ленца по тепловому действию тока (1842–1843 гг.), которая была выполнена независимо от Джеймса Джоуля (1841 г.) и представляла собой настолько обстоятельное исследование, что известному закону было справедливо присвоено имя обоих ученых.

В 1867 г. Д.К. Максвелл сделал доклад Лондонскому Королевскому обществу «О теории поддержания электрических токов механическим путем без применения постоянных магнитов». Это был чисто теоретический труд, охвативший все известные к тому времени сведения об электрических машинах постоянного тока. Вероятно, затруднения в понимании максвелловского стиля изложения помешали современникам по достоинству оценить эту работу.

Серьезно продвинули теорию электрических машин введенные в 1879 г. английским электротехником Джоном Гопкинсоном (1849–1898 гг.) графические представления о зависимостях в электрических машинах, так называемые характеристики машин (характеристика холостого хода, внешняя и др.). Им же введено понятие о коэффициенте магнитного рассеяния.

В мае 1886 г. Дж. и Эдвард Гопкинсоны сделали доклад в Лондонском Королевском обществе «Динамоэлектрические машины», в котором содержалась уже вполне законченная, не потерявшая своего значения до нашего времени теория электрических машин постоянного тока.

Открытия в области электричества и магнетизма, сделанные в первой половине XIX в., а также практическое применение этих явлений стали предпосылками важных научных обобщений, в частности создания электромагнитной теории Д.К. Максвелла. Первые дифференциальные уравнения поля были записаны Д.К. Максвеллом в 1855–1856 гг. В 1864 г. он дал определение электромагнитного поля и заложил основы его теории.

Заслуга Д.К. Максвелла состоит в том, что, использовав накопленный до него громадный экспериментальный материал, он обобщил и развил прогрессивные идеи М. Фарадея, придав им стройную математическую форму. В своем труде «Трактат об электричестве и магнетизме» (1873 г.) Д.К. Максвелл изложил основы разработанной им теории поля, являющейся краеугольным камнем современного учения об электромагнетизме. Важнейшие результаты своих исследований Д.К. Максвелл сформулировал в виде знаменитых уравнений, получивших его имя. Д.К. Максвелл обобщил закон электромагнитной индукции, распространив его на произвольный контур в любой среде. Он ввел понятие об электрическом смещении и токах смещения,

установил принцип замкнутости тока. Одним из важнейших выводов Д.К. Максвелла является утверждение о том, что магнитное и электрическое поля тесно связаны и изменение одного из них вызывает появление другого. Исследования показали, что скорость распространения подобных электромагнитных возмущений совпадает со скоростью света. Этот вывод был положен в основу электромагнитной теории света, разработанной Д.К. Максвеллом и являющейся одним из выдающихся теоретических обобщений естествознания.

Д.К. Максвелл не дожил до торжества своих глубоких научных идей и обобщений. Он сам еще не мог во всем объеме представить значение всего того, что содержалось в его «Трактате об электричестве и магнетизме», и того, что из него вытекало. Позднее немецкий физик Генрих Герц (1857–1894 гг.) экспериментально доказал существование электромагнитных волн.

Важное значение в развитии представлений о движении энергии имели работы проф. Николая Алексеевича Умова (1846–1915 гг.), среди которых особого внимания заслуживает его докторская диссертация «Уравнения движения энергии в телах» (1874 г.). Идеи Н.А. Умова получили дальнейшее развитие, в частности, в трудах английского физика Джона Генри, Пойнтинга (1852–1914 гг.) применительно к электромагнитному полю (1884 г.).

 

 








Дата добавления: 2016-01-30; просмотров: 1133;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.