Принцип системной организации интегративной деятельности мозга

 

Представление о функции мозга как о результате динамической интеграции различных структур, выполняющих определенную, специфическую роль в формировании целостной деятельности мозга, впервые было сформулировано И.М. Сеченовым в 1863 г. Это представление, получившее дальнейшее развитие в трудах выдающихся физиологов И.П. Павлова, А.А. Ухтомского, Н.А. Бернштейна, П.К. Анохина, стало приоритетным в отечественной физиологии, послужив основой для объяснения механизмов целенаправленного поведения и мозговой организации психических процессов.

Высшая нервная деятельность. В учении о высшей нервной деятельности, созданном И.П. Павловым, огромное внимание уделяется нейрофизиологическим процессам, обеспечивающим приспособительные реакции организма на воздействия внешнего мира. Высшая нервная деятельность, согласно учению И.П. Павлова, – это совокупность сложных форм деятельности коры больших полушарий и ближайших к ним подкорковых структур, обеспечивающих взаимодействие целостного организма с внешней средой. В качестве нервного механизма, обеспечивающего реагирование на внешние воздействия, рассматривался условный рефлекс . В отличие от безусловных рефлексов, являющихся врожденными, сформировавшимися в ходе эволюции и передающимися по наследству, условные рефлексы возникают, закрепляются и угасают (если утрачивают свое значение) в течение жизни. Условные рефлексы могут образовываться на любые сигналы, реализуясь при участии высших отделов нервной системы. От стабильных безусловных условные рефлексы отличаются изменчивостью. В течение жизни индивидуума иные из них, утрачивая свое значение, угасают, другие вырабатываются. Образование условного рефлекса связано с установлением временной связи между двумя группами клеток коры: между воспринимающими условное и воспринимающими безусловное раздражение. Эта связь становится тем прочнее, чем чаще одновременно возбуждаются оба участка коры. После нескольких таких сочетаний связь оказывается настолько прочной, что потом при воздействии одного лишь условного раздражителя возбуждение возникает и во втором очаге.

В настоящее время образование временной связи между двумя корковыми центрами при выработке условного рефлекса рассматривается как один из механизмов внутрицентрального взаимодействия, обеспечивающего формирование навыка и поведение индивида. В условиях реального существования организма условный рефлекс является элементом, включенным в сложную целостную деятельность мозга – интегративную деятельность. Наличие сложной системы внутрикорковых и корково‑подкорковых связей создает основу для более сложного взаимодействия нервных центров. Интегративная деятельность мозга в каждый момент времени осуществляется структурами мозга, объединенными в динамические системы, обеспечивающие приспособительный характер поведенческих реакций.

Принцип доминанты А.А. Ухтомского. А.А. Ухтомский, анализируя мозговые механизмы поведения сформулировал принцип доминанты. Согласно представлению А.А. Ухтомского, при осуществлении действия, обусловленного актуальными для данного момента сигналами или внутренними потребностями, возникает доминантный очаг возбуждения, создающий в мозгу динамическую констелляцию (объединение) нервных центров – функциональный рабочий орган. Констелляция нервных центров состоит из обширного числа пространственно разнесенных нервных элементов разных отделов ЦНС, временно объединенных для осуществления конкретной деятельности. Отдельные ее компоненты в разные моменты могут образовывать разные динамические констелляции, обеспечивающие выполнение определенных стоящих перед организмом целей и задач. А.А. Ухтомский обращал внимание на тот факт, что «нормальная деятельность мозга опирается не на раз и навсегда определенную статику различных фокусов как носителей отдельных функций, а на непрестанную межцентральную динамику нервных процессов на разных уровнях ЦНС». Тем самым подчеркивался не жесткий, а пластичный характер функциональных объединений, лежащих в основе интегративной деятельности мозга. Это определило понимание интегративной деятельности как результата системного динамического взаимодействия мозговых структур, обеспечивающего адаптивное реагирование и поведение индивида.

Рис. 57. Блок‑схема функциональной системы П.К. Анохина

 

Концепция функциональной системы П.К. Анохина. Положения о системной организации деятельности мозга получили дальнейшее развитие в теории функциональных систем П.К. Анохина (рис. 57). Функциональная система представляет собой объединение элементов организма (рецепторов, нервных элементов различных структур мозга и исполнительных органов), упорядоченное взаимодействие которых направлено на достижение полезного результата, рассматриваемого как системообразующий фактор. Функциональная система формируется на основании целого ряда операций.

1. Афферентный синтез всей имеющейся информации, которая включает наличную афферентацию, следы прошлого опыта, мотивационный компонент. На основе синтеза всей этой информации обоснованно принимается решение и формируется программа действий.

2. Принятие решения с одновременным формированием программы действий и акцептора результатов действий – модели ожидаемого результата. Это означает, что до осуществления любого поведенческого акта в мозге уже имеется представление о нем; сходное представление об организации деятельности мозга было высказано Н.А. Бернштейном, считавшим, что всякому действию должно предшествовать создание «модели потребного будущего», т. е. того результата, на достижение которого направлена функциональная система.

3. Собственно действие, которое организуется за счет эфферентных сигналов из центральных структур к исполнительным органам, обеспечивающим достижение необходимой цели.

4. Сличение на основе обратной связи параметров совершенного действия с моделью – акцептором его результатов; обратная афферентация является необходимым фактором успешности каждого поведенческого акта и основой саморегуляции функциональной системы.

В состав функциональной системы включены элементы, принадлежащие как одной физиологической системе или органу, так и разным (пространственная разнесенность компонентов). Одни и те же элементы могут входить в состав разных функциональных систем. Стабильность состава компонентов функциональной системы и характер их взаимосвязи определяются видом реализуемой деятельности. Функциональные системы, обеспечивающие жизненно важные функции (дыхание, сосание), состоят из стабильных, жестко связанных компонентов. Системы, которые обеспечивают осуществление сложных поведенческих реакций и психических функций, включают в себя как жесткие, так и в значительно большей степени гибкие, пластичные связи, что создает высокую динамичность и вариативность их организации в зависимости от конкретных условий и задач.

Интегративные процессы и обработка информации в сенсорных системах

Сенсорные системы, или анализаторы. В обеспечении контактов организма с окружающим миром ведущая роль принадлежит сенсорным системам, осуществляющим прием и обработку внешних сигналов. На основе информационных процессов создается образ мира, складывается индивидуальный опыт, формируется познавательная деятельность. Представление о единой многоуровневой системе приема и анализа внешних сигналов впервые было сформулировано И.П. Павловым, создавшим учение об анализаторах. По И.П. Павлову, первичный анализ информации осуществляется тремя взаимосвязанными отделами: периферическим (рецепторный аппарат), проводниковым (проводящие пути от рецепторов и переключательные ядра таламуса) и центральным (проекционные области коры больших полушарий).

Рис. 58. Схема строения сетчатки

1 – пигментный слой; 2 – палочки; 3 – колбочки; 4 – биполярные нейроны; 5 – горизонтальные клетки; 6 – амакриновая клетка; 7 – ганглиозные клетки.

Пунктиром обозначено разделение сетчатки на слои

 

Рецепторы – специализированные образования, реагирующие на качественно различные виды (модальность) внешних сигналов: зрительный, слуховой, обонятельный, тактильный. Воспринимаемая рецепторами специфическая энергия (световые, звуковые волны) преобразуется в последовательность нервных импульсов, передающихся по специфической афферентной системе. Рецепторы различаются по строению, одни из них представлены сравнительно простыми клетками или нервными окончаниями, другие, например сетчатка глаза или кортиев орган уха, являются элементами сложноустроенных органов чувств.

Учитывая особую роль зрительной и слуховой сенсорных систем для человека и сложность их рецепторных структур, рассмотрим их строение, обеспечивающее восприятие сигналов соответствующей модальности.

Рис. 59. Звуковоспринимающий аппарат (кортиев орган)

 

Сетчатка (см. рис. 58) – многослойное образование. Она состоит из пигментного слоя, фоторецепторов и нескольких слоев нервных клеток. Фоторецепторы, воспринимающие световые волны, представлены двумя видами клеток: колбочками и палочками. Палочки обладают большей чувствительностью. Этот аппарат сумеречного зрения располагается на периферии сетчатки. В центре расположены колбочки, воспринимающие различные цвета, их чувствительность меньше и они функционируют только при ярком освещении. Нервные клетки осуществляют первичную обработку информации в сетчатке. Их аксоны образуют зрительный нерв, по которому информация передается в головной мозг. К моменту рождения сетчатка практически сформирована, колбочковый аппарат окончательно созревает в раннем постнатальном периоде, что касается зрительного нерва, то его миелинизация происходит в течение первых 3 мес, и это определяет значительное увеличение скорости передачи информации в мозг.

Звуковоспринимающий аппарат – кортиев орган расположен в улитке внутреннего уха (рис. 59). Его основная часть – покровная пластинка – состоит примерно из 24 тыс. тонких и упругих фиброзных волоконец. Вдоль основной пластинки в 5 рядов расположены опорные и волосковые клетки, воспринимающие звуковые волны. При распространении звуковых волн разные волосковые клетки реагируют на звуки разной высоты и интенсивности. Возникающие в этих клетках импульсы по слуховому нерву передаются в центральную нервную систему. Слуховая сенсорная система формируется очень рано и периферийный аппарат функционирует уже в пренатальном периоде.

Сенсорная информация из зрительного и слухового рецепторных аппаратов через релейные ядра таламуса поступает в проекционные отделы коры больших полушарий. Модально специфическая информация топически организована: от определенных участков рецепторного аппарата она поступает к определенным нейронам коры больших полушарий. Это так называемые рецептивные поля нейронов, способствующие пространственной организации сенсорных процессов.

Кодирование сенсорной информации. Информация о разных характеристиках стимула передается определенной последовательностью нервных импульсов – нервным кодом. Кодирование осуществляется числом и частотой импульсов в разряде, интервалами между разрядами, общей конфигурацией разряда. Как на основе нервного кода распознаются отдельные признаки, а затем складывается целостный образ? Наиболее убедительный ответ на вопрос о кодировании признаков дает точка зрения о наличии на разных уровнях сенсорной системы высокоспециализированных нервных клеток, избирательно реагирующих на определенный признак стимула – ориентацию, направление движения, интенсивность. Они получили название детекторов. Нейроны‑детекторы , выделяющие из стимулов разные признаки (цвет, движение, ориентацию), расположены на разных уровнях ЦНС и в разных слоях коры. Нейроны, выделяющие сложные признаки, локализованы в верхних слоях коры и образуют объединения (нейронные ансамбли).

Для проекционных корковых зон наиболее характерны вертикально ориентированные нейронные ансамбли – колонки, впервые обнаруженные Маунткаслом в соматосенсорной коре. Одни колонки реагировали на прикосновение к поверхности тела, другие – на давление. Часть колонок реагировала на стимуляцию только одной половины тела. Колонки обнаруживаются и в других областях коры. По сложности обрабатываемой информации выделяют три типа колонок: микроколонки, макроколонки и гиперколонки, или модули (рис. 60).

Микроколонки реагируют лишь на определенную градацию какого‑либо признака, например вертикальную или горизонтальную ориентацию; макроколонки, объединяя микроколонки, выделяют общий признак ориентации, реагируя на разные ее значения. Модуль выполняет обработку самых разных характеристик стимула (интенсивность стимула, цвет, ориентация, движение).

Иерархически организованная система связей от микроколонок к модулям обеспечивает возможность осуществляемого в проекционной коре тонкого дифференцированного анализа признаков разной сложности внутри одной сенсорной модальности.

Дальнейшая обработка сенсорно специфической информации осуществляется с участием так называемых гностических нейронов, получающих информацию об отдельных признаках от системы нейронов‑детекторов. В гностических нейронах отдельные признаки интегрируются в целостный одномодальный (зрительный или слуховой) образ воспринимаемого объекта. Гностические нейроны, интегрирующие признаки одной сенсорной модальности, составляют 4–5 % нервных клеток в первичных проекционных зонах и широко представлены во вторичных полях.

Рис. 60. Схема модульной организации нейронов в коре больших полушарий. Слева обозначены слои коры

 

Нейронные сети как структурно‑функциональная основа перцепции. В настоящее время широкое признание получило представление о значении нейронных сетей в информационных процессах. Согласно сетевому принципу, формирование нейронных сетей обеспечивает не только анализ поступающих сигналов, но и создает возможность существенно иной качественной обработки информации. Представление о сетевом принципе организации нервной переработки информации было выдвинуто Д. Хеббом, рассматривающем в качестве элементарной интегративной единицы нейронные ансамбли, которые могут расцениваться как локальные нервные сети. Помимо таких локальных сетей существуют и более сложные нейронные сети, которые объединяют различные области коры и обладают выраженными пластичными свойствами. В информационных процессах эти сети объединяют в единую систему проекционные и ассоциативные области коры и являются основой организации целостного процесса восприятия.

Возрастная динамика сенсорных процессовопределяется постепенным созреванием различных звеньев анализатора. Рецепторные аппараты созревают еще в пренатальном периоде и к моменту рождения являются наиболее зрелыми. Значительные изменения претерпевают проводящая система и воспринимающий аппарат проекционной зоны, что приводит к изменению параметров реакции на внешний стимул. Следствием усложнения ансамблевой организации нейронов и совершенствования механизмов обработки информации, осуществляемой в проекционной корковой зоне, является усложнение возможностей анализа и обработки стимула, которое наблюдается уже в первые месяцы жизни ребенка. На этом же этапе развития происходит миелинизация афферентных путей. Это приводит к значительному сокращению времени поступления информации к корковым нейронам: латентный (скрытый) период реакции существенно сокращается. Дальнейшие изменения процесса переработки внешних сигналов связаны с формированием сложных нервных сетей, включающих различные корковые зоны и определяющих формирование процесса восприятия как психической функции.

 








Дата добавления: 2016-01-30; просмотров: 1755;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.