НАУЧНАЯ КОНЦЕПЦИЯ ФИЗИЧЕСКОГО ВАКУУМА

 

Физический вакуум — универсальная среда, пронизывающая все пространство, которую во времена Ньютона называли эфиром и. наделяли другими свойствами.

А.. Акимов

 

В развитии теоретической физики можно выделить три этапа: предварительный, классический макроуровневый и релятивистский (релятивистская физика — это физика больших скоростей, 18, с, 635).

Сейчас начинается новый четвертый классический микроуровневый этап, вызванный прежде всего, доказательством реального существования материальной субстанции в мировом пространстве — физического вакуума. Начало нового этапа развития физики, видимо, придется отсчитывать с момента признания ученой общественностью достоверности решения коренных фундаментальных проблем теоретической физики. Это решение заключается в разоблачении ошибочной сути постулата постоянства скорости света с параллельным доказательством реальности материального физического вакуума(19, с. 322).

Согласно философской концепции великого древнегреческого философа Демокрита все вещества состоят из частиц, между которыми находится пустота. Известно, что расстояние между молекулами воды примерно в десять тысяч раз (а между молекулами газа — примерно в сто тысяч раз) больше, чем размеры самих молекул; значит, по Демокриту, основная по объему часть вещества представляет пустоту,

Но, согласно философской концепции другого не менее знаменитого древнегреческого философа Аристотеля, в мире нет ни малейшего места, где бы не было “ничего”; значит, по Аристотелю, между молекулами вещества должна быть какая-то среда. Эта концепция использовалась учеными для объяснения различных явлений, а среда, находящаяся между частицами тел, а также пронизывающая безграничное пространство Вселенной, называлась эфиром,

 

Превратности эфира

 

Античность завещала свой эфир средним векам, и в европейской науке этого времени эфир рассматривался как пятая стихия: земля, вода, воздух, огонь и эфир. Ученые XVIII—XIX веков, принявшие учение об эфире как мировой среде, с самого начала оказались в очень затруднительном положении. В отличие от античных философов и средневековых схоластов, они были представителями новой науки, опирающейся на громогласно провозглашенный Френсисом Бэконом принцип экспериментальной проверки теоретических положений.

При рассмотрении различных явлений ученые приписывали эфиру разные свойства, но оставалось неясным, что же из себя представляет эфир.

У великого физика Ньютона отношения с эфиром были сложные, трудные, даже трагические. Ньютон в течение всей своей жизни то утверждал, то отрицал существование эфира как мировой среды. Анализируя многочисленные данные наблюдений движения планет, Ньютон открыл закон всемирного тяготения, согласно которому определяется сила взаимодействия небесных тел. В дальнейшем в соответствии с этим законом было экспериментально подтверждено взаимодействие тел на Земле. Закон всемирного тяготений — одна из вершин классической физики, Он — типичный классический закон дальнодействия. Но не все в этом законе удовлетворяло Ньютона- Что вне все”? Неизбежное в теории дальнодействия — мгновенное действие сил тяготения через большие расстояния, Ньютон понимал, что его законы могут иметь смысл, только если пространство обладает физической реальностью. В письме одному из своих друзей Ньютон писал:

“Мысль о том, ...чтобы одно тело могло воздействовать на другое через пустоту на расстоянии, без участия чего-то такого, что переносило бы действие и силу от одного тела к другому, — представляется мне столь нелепой, что нет, как я полагаю, человека, способного мыслить философски, кому она пришла бы в голову” (105, с. 182).

В своем творчестве Ньютон систематически возвращался к этому вопросу, стремясь дать теоретическое обоснование гравитации; при этом он возлагал большие надежды на эфир и считал, что раскрытие сущности эфира позволило бы получить решение и этого важнейшего вопроса. Эфир был нужен и полезен теории Ньютона. Но, придерживаясь принципа точных наблюдений и строгих экспериментов и не имея возможности доказать существование эфира, Ньютон предупреждает, что при изложении гипотезы эфира будет “иногда говорить о ней так, как будто бы я ее принял и верю в нее”, однако всего лишь “во избежание многословия и для более ясного представления” (69, с. 31).

В 1679 году Ньютон в письме великому физику Роберту Бойлю излагает свое предположение о некоем вездесущем тонком веществе по имени “эфир”. Оно имеет разную плотность, состоит из частиц “тонких”, причем тонких в разной степени. Чем ближе тело (любое) к центру тяготения, тем все более тонкие частицы эфира заполняют поры этого тела, вытесняя из них эфирные частицы более крупные, более грубые. Такое движение эфира и заставляет тело стремиться к центру тяготения, вызывая падение тела на Землю.

Однако в первом издании генерального труда о всемирном тяготении (хотя и не только о нем), в “Математических началах натуральной философии”, вышедшем в свет в 1687 году, всякое предположение об эфире отсутствует. Но во втором издании этого труда в 1713 году Ньютон уделяет серьезное внимание “некоторому тончайшему эфиру, проникающему во все сплошные тела и в них содержащемуся, коего силою и действиями частицы тел при весьма малых расстояниях взаимно притягиваются, а при соприкосновении сцепляются, наэлектризованные тела действуют на большие расстояния, как отталкивая, так и притягивая близкие малые тела, свет испускается, отражается, преломляется, уклоняется и нагревает тела, возбуждается всякое чувствование, заставляющее члены животных двигаться по желанию, передаваясь именно колебаниями этого эфира от внешних органов чувств мозгу и от мозга мускулам” (69, с. 32).

В течение своей долгой и плодотворной жизни великий ученый менял свои позиции многократно. Время от времени Ньютон просто замечал, что об эфире ничего достоверно неизвестно, неизвестно даже, есть он или нет, и потому не желает он, Ньютон, даже мнения своего высказывать по этой проблеме! А потом все-таки снова и снова высказывает мнение, и оно то за существование эфирa, то против него.

Кандидат физико-математических наук С. Смирнов, специально изучавший проблему сложных отношений Ньютона с эфиром, пришел к разрешению этой загадки благодаря существованию воспоминаний друзей Ньютона. и выяснилась удивительная вещь: Ньютон не только верил в Бога — вездесущего и всемогущего, но и не мог представить его себе иначе, чем в виде особой субстанции, пронизывающей все пространство и регулирующей все силы взаимодействия между телами, а тем самым — все движения тел, все, что происходит в мире. То есть Бог — это и есть эфир! С точки зрения церкви — это ересь, И вот Ньютон (добрый христианин и добрый физик) не смеет писать об этом своем убеждении, а только иногда проговаривается в дружеских беседах (69, с- 34).

Интуиция никогда не подводила Ньютона. Не подвела она и с эфиром.

 

Особая материальная субстанция, пронизывающая все пространство и регулирующая ВСЕ силы взаимодействия, правда, существенно отличающаяся от того эфира, который представляли во времена Ньютона, была обнаружена учеными XX века, исследована и названа физическим вакуумом.

 

Авторитет Ньютона прибавил авторитета и эфиру. Современники и потомки обратили гораздо больше внимания на те высказывания великого физика, которые утверждали существование эфира, чем на другие, ставившие это существование под сомнение.

Под понятие ”эфир” стали подводить все, что, как мы теперь знаем, вызывается гравитационными и электромагнитными силами. Но поскольку другие фундаментальные силы мира до возникновения атомной физики практически не изучались, то с помощью эфира брались объяснять любые явления и любой процесс.

Особенно возрос интерес к эфиру после открытия электромагнитного поля. Вот где особая упругая среда казалась незаменимой для последовательного преобразования электрических и магнитных полей одно в другое, Искусный теоретик электромагнитных волн Д. Максвелл в своих построениях словно воочию видел возникающие при этом натяжения эфира. Что-то вроде поля упругих сил, действующих в деформированном растянутом или сжатом куске резины.

Эфир должен был обеспечивать действие закона всемирного тяготения; эфир оказывался средой, по которой идут световые волны; эфир нес ответственность за все проявления электромагнитных сил; да вообще ответы на почти все загадки природы: физические, химические, биологические — требовалось найти именно в эфире. Для одновременного выполнения всех этих функции ему надлежало обладать весьма разными и часто слишком противоречивыми свойствами.

Например, бурное развитие волновой теории света заставило наделить эфир просто фантастическими свойствами. Когда англичанин Томас Юнг и француз Оггостен Френель пришли к выводу, что свет представляет собой не продольные, а поперечные колебания, им было трудно осмыслить результат как реальный. Чтобы обеспечить движение поперечных световых волн со скоростью, определенной достаточно точно еще в XVII веке, эфир должен был обладать фантастической упругостью, Большей, чем самая упругая сталь. Упругость же — свойство, прежде всего, твердого тела, да и то не всякого, В то же время эфир должен быть для света прозрачнее, чем любой газ, и не должен мешать движению звезд и планет.

Каждое новое достижение волновой теории света заставляло наделять эфир все новыми и новыми свойствами. Это — с одной стороны, а с другой — не было и экспериментов, которые позволили бы отрицать эфир. Постепенно, однако, объяснения световых явлений на основе эфирной гипотезы стали выглядеть все более искусственными. Стало складываться убеждение о несовершенстве основ классической физики. С целью выхода из кризиса был взят курс на разработку специальной физики — физики больших скоростей, близких к скорости света (релятивистская физика).

В первую очередь следовало проверить действенность основных положений классической физики при световых и околосветовых скоростях.

Классическая физика базируется на трех законах Ньютона, причем все законы вытекают как частный случай из законов общей теории. Классическая физика, таким образом, представляет собой пример великолепно разработанной теории, детали и общие принципы которой не претерпевают никаких изменений или исправлений уже несколько столетий.

В основе классической физики лежит абсолютность пространства и времени, согласно которой ход времени (длительность его единицы, например, секунды) и размер тела (величина единицы длины, например, метра) неизменны в любых системах отсчета и не зависят от того, покоится система отсчета или движется каким-либо образом.

Важнейшей основой классической физики является также принцип относительности Галилея, утверждающий, что опыты, проводящиеся в неподвижной системе, и такие же опыты, проводящиеся в системе, движущейся равномерно и прямолинейно, дадут одинаковые результаты, то есть все законы механики сохраняются для любых инерциальных систем отсчета. Инерциальные системы отсчета — системы, свободные от внешних воздействий и которые, следовательно, движутся равномерно прямолинейно или находятся в состоянии покоя (18,с.220).

И, наконец, к основным положениям классической физики относится правило сложения скоростей: если источник движения, сообщающий телу скорость или среда. в которой тело движется со скоростью U, имеют в том же направлении скорость V относительно неподвижного наблюдателя, то скорость тела W относительно этого наблюдателя определяется правилом сложения скоростей, согласно которому W = V + U (20, с. 24).

 

Опыт Физо

 

Прежде всего, возник вопрос о справедливости правила сложения скоростей при световых явлениях. Для его решения необходимо было провести эксперимент по сложению скорости движения среды (например, воды) со скоростью распространения света в этой среде. Но как провести такой эксперимент? Трудности его проведения заключались в том, что скорость света в воде U = с/n = 225 000 км/с, где с — скорость света в вакууме, с = 300 000 км/с; n — показатель преломления воды, n = 1,33. Скорость воды можно было бы сделать примерно 10 м/с, что в десятки миллионов раз меньше скорости света. Поэтому такой эксперимент долго не удавалось осуществить.

Но оказалось, что указанное небольшое изменение скорости света можно измерить, если использовать явление интерференции. Интерференция — это сложение в пространстве двух или нескольких волн, при котором в разных его точках получается усиление или ослабление амплитуды результирующей волны. Интерференция характерна для волн любой природы: волн на поверхности жидкости; упругих (например, звуковых); электромагнитных (например, радиоволн или световых). Причем интерферируют только когерентные волны, то есть волны, имеющие постоянную разность фаз во времени (70, с. 290), Такими когерентными волнами-лучами являются, например, лучи, исходящие из одной точки источника света. Если два луча от одной точки источника света пустить по разным направлениям, а затем привести в одну точку, то в этой точке будет происходить интерференция света; если разность хода лучей, измеренная в количестве совершенных полуволн, составит четное число, то происходит сложение энергий этих лучей, и точка будет наиболее светлой; если же разность хода составит нечетное число полуволн, то энергии лучей вычитаются, и точка будет наиболее темной.

Таким образом, в зависимости от разности хода лучей освещенность в точке их встречи будет меняться. Зная длину волны света (от 0,4 микрона до 0,7), можно рассчитать, какую величину изменения скорости света можно измерить. Расчеты показали, что можно сделать установку, позволяющую определить изменение скорости света на одну стомиллионную долю, что даже лучше, чем требуется.

Такую установку впервые изготовил, а затем осуществил на ней уникальный опыт в 1851 году известный французский физик А. И. Физо.

В установке Физо луч от источника света с помощью полупрозрачной пластины разделялся на два луча, один из которых, отражаясь от зеркала, проходил через текущую воду по направлению ее движения, а второй — против движения. Скорость движения воды изменялась от 0 до 7 м/с. Оба луча направлялись далее в интерферометр, где наблюдалась интерференционная картина. По смещению интерференционных полос определялась разность времени прохождения лучей света в движущейся воде (по течению и против течения, 18, с, 818).

Результаты опыта оказались неожиданными: сложение скорости света в воде со скоростью движения воды не соответствовало требованию классической физики:

 

W = V + U.

 

Опыт показал, что сложение скоростей происходит по соотношению

 

W= U + V(1 -1/n),

 

где n — показатель преломления воды; n = 1,33.

 

Многократно проверенный опыт давал все время один и тот же результат. Он показывал, что скорость света не подчиняется правилу сложения скоростей. Напрашивался вывод, что классическая физика при больших скоростях, соизмеримых со скоростью света, неверна.

Чтобы спасти классическую физику, ученые приняли гипотезу о движении света в эфире, находящемся между частицами воды и воздуха. Если предположить, что эфир не увлекается частицами вещества при их движении или увлекается частично в зависимости от величины показателя преломления, то становится понятным объяснение опыта Физо с позиций классической физики: скорость движения частиц вещества не передается полностью находящемуся между частицами эфиру и поэтому не складывается со скоростью света в эфире в соответствии с правилом сложения скоростей, и для среды с показателем преломления, близким к единице, эфир остается неподвижным.

Таким образом была принята гипотеза существования неподвижного мирового эфира, согласно которой все тела Вселенной движутся в неподвижном мировом эфире. Такая гипотеза объясняла опыт Физо и спасала классическую физику.

Забегая вперед, укажем допущенную этой гипотезой роковую ошибку. Опыт Физо, проводившийся на Земле, свидетельствует о том, что движущееся на Земле вещество не увлекает околоземной эфир. Достаточно было предположить, что только околоземный эфир неподвижен относительно Земли, а не выдвигать гипотезу о неподвижности всего мирового эфира.

Но поскольку гипотеза была принята, перед учеными возник вопрос о ее экспериментальном подтверждении, Известно, что Земля в своем движении вокруг Солнца имеет скорость V = 30 км/с- Поэтому, если поставить опыт по обнаружению этой скорости движения Земли в мировом неподвижном эфире, то тем самым можно будет подтвердить справедливость гипотезы. Технически такой опыт осуществить трудно, и лишь спустя 30 лет после опыта Физо, то есть в 1881 году, впервые этот уникальный опыт был осуществлен американским ученым А. Майкельсоном.

 

Опыт Майкельсона

 

Опыт Майкельсона — величайший из всех отрицательных, опытов в истории науки.

Дж. Бернал

 

Ученые рассчитывали на то, что исключительно высокая скорость света в сочетании с необычайной миниатюрностью его носителя — фотонов позволит уловить ничтожное влияние заполняющего все пространство эфира. Приняв неподвижный и невесомый эфир за реальную сущность, ученые полагали, что скорость Земли относительно этой субстанции можно определить следующим образом. Поскольку Земля движется в пространстве, на что указывает ее вращение вокруг Солнца, постольку она перемещается в эфире. Если находящийся на Земле наблюдатель сумет измерить скорость луча света, движущегося в направлений, совпадающем с направлением движения Земли (по течению в эфире), а также скорость встречного луча света (против течения в эфире), то он легко сможет убедиться в различии этих скоростей.

Хитроумно приспособив для такого рода измерений высокочувствительный интерферометр, американский физик А. Майкельсон произвел свой знаменитый опыт, на основании которого рассчитывал получить различие скоростей в виде интерференционной картины. Каково же было удивление, когда никакого наложения оптических волн в зрительной трубе не получилось! Оказалось, что фотонам совершенно безразлично, куда лететь — по течению, против течения или же куда-то вбок (21,с.27).

Вывод напрашивался один: движения Земли через эфир нет, а, следовательно, гипотеза неподвижного мирового эфира, на которую классическая физика возлагала большие надежды, неверна.

Для спасения гипотезы неподвижного мирового эфира голландский ученый Лоренц (одновременно с американским ученым Фицджеральдом) предложил гипотезу сокращения размеров тела в направлении движения, Достаточно было предположить, что предметы, двигающиеся против течения эфира, изменяют свои размеры, сокращаются по мере приближения их скорости к скорости света. Считается, что в опыте Майкельсона действительно происходит "лоренцево” сокращение размеров тел, что, якобы, является экспериментальным подтверждением преобразований Лоренца, из которых математически следует это сокращение (20, с. 35).

Правда, Гендрика Лоренца с его высокой научной щепетильностью очень смущало, что его идея была придумана, как принято говорить, по случаю, специально для объяснения конкретного эксперимента. Он писал: “Подобному введению особых гипотез для каждого нового опыта присуща... некоторая искусственностью (69, с. 53). Иными словами, Лоренц ощущал разрыв между своей гипотезой и построениями всей предыдущей физики. А гипотезу все-таки выдвинул! Причем, как оказалось, она верно описывала факты, но неверно их объясняла.

Из преобразований Лоренца была получена также основная черта релятивистской кинематики — независимость скорости света от движения источника (18, с. 510).

Последствия эксперимента Майкельсона оказались судьбоносными практически для всех научных идей XX века.

 

Изгнание эфира

 

Но история наука не ограничивается перечислением успешных, исследований. Она должна сказать нам и о безуспешных исследованиях и объяснить, почему некоторые из самых способных людей не смогли найти ключа знания и как репутация других дала лишь большую опору ошибкам, в которые они впали.

Максвелл

 

Для дальнейшего развития теоретической физики нужна была теория, которая могла бы разрешить очередной сложившийся кризис. Долгое время попытки ученых в этом вопросе были тщетны, И лишь спустя почти четверть века после первого опыта Майкельсона выход из создавшегося положения в 1905 году предложил молодой Альберт Эйнштейн, опубликовав свою первую работу по теории относительности “К электродинамике движущихся тел”.

Анализируя результаты опытов Физо и Майкельсона, Эйнштейн в своей работе приходит к выводу, что следует отказаться от введения понятия эфира, так как предположение о том, что эфир покоится одновременно в двух системах (в системе, связанной с Землей, в опыте Майкельсона и в неподвижной системе в опыте Физо), является абсурдным.

В свое время опыт Физо был объяснен наличием мирового неподвижного эфира, в котором движутся все тела. Опыт Майкельсона опроверг эту гипотезу: скорость света относительна Земли всегда имела одно и то же значение независимо от того. движется ли Земля в направлении движения луча света или навстречу лучу. Это можно было бы объяснить движением Земли вместе с околоземным эфиром, в котором распространяется луч света- О возможности такого объяснения говорит и Эйнштейн, но тогда становится непонятным опыт Физо, показавший, что тело не движется вместе с эфиром.

Как было установлено наукой много позднее, перемещающееся на Земле тело в опыте Физо действительно не движется вместе с эфиром внутри тела, так как этот эфир удерживается силой гравитации Земли.

Однако Эйнштейн приходит к отказу от эфира не только на основании анализа опытов Физо и Майкельсона, но и в результате анализа всей истории развития физики, показанной в великолепно написанной книге “Эволюция физики”.

Не найдя механического объяснения эфира, Эйнштейн выносит смертельный приговор эфиру: “Все наши попытки сделать эфир реальным провалились. Он не обнаружил ни своего механического строения, ни абсолютного движения. Все попытки открыть свойства эфира привели к трудностям и противоречиям. После стольких неудач наступает момент, когда следует совершенно забыть об эфире и постараться никогда больше не упоминать о нем” (20,с. 34).

Обосновав отказ от эфира и то, что все явления в природе нельзя объяснить с механистической точки зрения, Эйнштейн приходит к мысли о несовершенстве основ классической физики. Он задумывает теорию, которая исправила бы основы классической физики, помогла выйти из создавшегося кризиса и послужила бы основой для дальнейшего развития теоретической физики.

Созревший в физике кризис указывал на необходимость смены парадигмы в естествознании.

Содержательная база парадигм в естествознании всегда строилась на выборе соответствующего принципа относительности, соответствующей геометрии пространства и постулировании существования некой универсальной среды, переносящей взаимодействия. Во времена Ньютона господствовали геометрия Евклида, принцип относительности Галилея, а на роль субстанции, переносящей взаимодействия, претендовал эфир. И вот эфир был отвергнут. Одна из трех опор, поддерживающих старую парадигму, рухнула. Но оказывается, к концу ХIХ века и две другие были сильно подточены.

Давайте вспомним, каким представлялся мир ученым во времена Ньютона. Абсолютное, везде одинаковое, ни с чем не связанное, ни от чего не зависящее время. Абсолютное, всюду однородное пространство, с абсолютной, везде одинаковой и тоже ни от чего не зависящей геометрией. В таком абсолютном пространстве и таком абсолютном времени существует, подчиняясь физическим законам, вся материя. Например, закон всемирного тяготения определяет зависимость силы взаимного притяжения тел от величины их масс и расстояния между ними. И, конечно, все ученые были убеждены, что ни массы, ни силы, ни связывающие их законы не зависят от времени и пространства, так же как время и пространство ни от чего не зависят.

И вот в 1826 году дерзкий смутьян из России Н. И. Лобачевский заявил: “Это не так. С силами, с массами тесно связано само время, от них зависит и строение пространства, то есть его геометрия” (105, с. 51).

Но что означает зависимость геометрии от сил или от масс? Она означает, что пространство не является абсолютным и однородным, что геометрия его определяется величиной и распределением масс. Нет абсолютного, ни от чего не зависящего пространства, одинакового для всех. Нет и абсолютного времени, которое для всех текло бы совершенно одинаково. То есть наше реальное пространство оказывается неевклидовым. Искривление пространства прямо следует из основного уравнения Н. И. Лобачевского. Таким образом, путы, сковавшие геометрию со времен Евклида, первым разорвал Н. И, Лобачевский. Он построил более широкую геометрическую систему — пангеометрию, которая не отвергала, не сменяла геометрию Евклида, а просто отвела ей скромное место частного случая. Позже Б. Риман расширил содержание геометрии так, что и творение Лобачевского стало частным случаем. Геометрия Евклида представляла геометрию пространства с нулевой кривизной, геометрия Лобачевского — с отрицательной кривизной, а геометрия Римана — с положительной кривизной.

Таким образом, необходимость разработки новой парадигмы в начале XX века была очевидна: эфир отвергнут. пространство — неевклидово (имеет кривизну) и не абсолютно.

И вот в такой ситуации Эйнштейн взялся за разработку новой теории относительности, которая для современной физики явилась тем же, чем была для классической физики механика Ньютона.

Все просто, когда уже найдено. И как неимоверно сложно, пока неизвестно, на каких подступах искать.

 








Дата добавления: 2016-01-29; просмотров: 718;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.022 сек.