ПРИСПОСОБЛЕННОСТЬ НИЗШИХ ОРГАНИЗМОВ К УСЛОВИЯМ СРЕДЫ

 

Самая высокая температура, которую выдерживают некоторые существа, например споры грибов или бактерий, приближается к 140°Ц.

Еще больше устойчивость организмов при низкой температуре.

Выдающийся советский ученый академик Вернадский создал учение о биосфере – оболочке земной коры. Он доказал, что наряду с неорганической материей в ней существует материя живая. В своих трудах Вернадский рассказывает, что французский физик Поль Беккерель опускал мхи, лишайники и водоросли на несколько недель в жидкий воздух с температурой ‑190°Ц. При отогревании в горячей воде они оживали.

Даже после 6 лет высушивания и погружения в жидкий воздух Беккерель оживлял лишайники –

стенница (ксантория) – с живущими на них коловратками и тихоходками. Ученый еще делал опыты и при самых низких доступных температурах (гелий ‑271°). Обезвоженные споры бактерий, водорослей, грибов, мхов, папоротников, очищенные от кожицы семена, подвергнутые действию этой температуры в пустоте, давали после размораживания нормальное потомство.

Многие виды бактерий и грибов живут без свободного кислорода. Их называют анаэробными.

Водоросли и мхи размножаются в запаянной трубке, наполненной водяными парами стерилизованных минеральных растворов, которые лишены растворенного кислорода. Эти организмы живут сначала без воздуха, производя угольную кислоту. Затем, восстанавливая фотосинтез, создают новую, кислородную атмосферу. Осциллярии жили таким образом 8 лет в атмосфере, созданной ими самими, пока не истощилась их питательная среда.

Холод, засоленность, ядовитые вещества – все это не помеха для жизни микробов, по крайней мере некоторых из них. Приспособительная способность этих одноклеточных существ неисчерпаема.

В горячих источниках, с температурой до 90°Ц, обнаружены своеобразные, приспособившиеся к этим условиям организмы.

Экспедиция микробиологов в 1946 году открыла жизнь даже в бесплодных, обезвоженных почвах пустыни Сахары, где в некоторых районах максимальная температура воздуха достигает 55°. Дождливых дней в году насчитывается здесь всего от двух до пяти. Поверхность земли – точно раскаленная сковородка. Даже с помощью специальных приборов в почве пустыни не удается обнаружить воду. И вот в этих, казалось бы невозможных для жизни условиях в грамме песка нашли до 100 тысяч микробов.

Микробы пустыни оказались очень тонкими химиками, их водососущая сила была выше всяких норм, известных для флоры засушливых районов.

Специальные приборы регистрировали «дыхание» почвы; следовательно, микробы были жизнедеятельны. Стеклянные пластинки, зарытые в исследуемую почву, через две недели оказывались покрытыми плесневыми грибами и бактериями.

Еще более обитаемы «черные пески» – пустыня Кара‑Кум. В комочке почвы величиной с наперсток находится более полумиллиона разнообразных видов микроорганизмов. Правда, жизнь микробов чуть теплится, но в этих существах таится недюжинная скрытая сила, которая проявляется, как только условия становятся более подходящими.

Таким образом, исследования, проведенные в пустыне, заставляют расширить наши представления о границах жизни.

Очень интересные многочисленные примеры приспособляемости низших организмов к среде приведены в работах академика Вернадского.

Плесневые грибы, бактерии, дрожжи выдерживают давление до 3 000 атмосфер без всякого видимого изменения своих свойств. Жизнь дрожжей сохраняется при 8 000 атмосфер давления. С другой стороны, скрытые формы жизни – семена или споры – могут сохраняться длительное время в «безвоздушном» пространстве, то‑есть при давлениях, равных тысячным долям атмосферы.

Огромна и область химических изменений, которые выдерживает жизнь.

Споры и зерна – скрытые формы жизни – могут, повидимому, неопределенное время находиться без всякого вреда в среде, лишенной газов и воды, то‑есть вполне сухой.

Химические среды, в которых может существовать жизнь, чрезвычайно разнообразны.

Бацилла «борацикола», живущая в горячих борных источниках Тосканы, свободно выдерживает 10‑процентный раствор серной кислоты при обычной температуре.

Известны плесневые грибки, которые живут в крепких растворах различных солей, купоросов, селитр, гибельных для других организмов. Та же бацилла «борацикола» выдерживает 0,3‑процентный раствор сулемы, а некоторые другие бактерии и инфузории даже ее концентрированные растворы. Дрожжи живут в растворах фтористого натрия. Личинки некоторых мух выживают в 10‑процентном растворе формалина.

В начале нашего века русский биолог С. Н. Виноградский доказал существование живых существ, лишенных хлорофилла, но добывающих себе питание из неорганических веществ. Эти невидимые существа – бактерии живут в почвах, в верхних слоях земной коры, проникают в глубокие толщи океана. Для поддержания своей жизнедеятельности они употребляют химическую энергию минералов, богатых кислородом, и поэтому не зависят от других организмов и солнечных лучей.

Число видов таких бактерий незначительно, оно не превышает сотни, между тем видов зеленых растений известно до 180 000. Но одна бактерия может произвести в один день по крайней мере несколько триллионов особей, между тем как одна одноклеточная зеленая водоросль, из всех зеленых растений наиболее быстро размножающаяся, дает в тот же промежуток времени лишь несколько особей, а большей частью гораздо меньше, около одной особи в 2–3 дня. Поэтому, несмотря на микроскопические размеры, из‑за поразительной силы размножения значение бактерий в природе огромно.

Как видим, приведенные академиком Вернадским примеры убедительно показывают беспредельность приспособляемости различных форм жизни.

 

ВОЗМОЖНА ЛИ ЖИЗНЬ МИКРООРГАНИЗМОВ НА ПЛАНЕТАХ

 

Зная физические и химические свойства планет солнечной системы и познакомившись с приспособляемостью микроорганизмов к условиям среды, мы можем с уверенностью говорить о существовании на Марсе и Венере микроорганизмов.

Можно ли сказать то же о планетах‑гигантах – Юпитере, Сатурне, Уране и Нептуне?

Как известно, температура на внешних оболочках их атмосфер очень низка: от ‑140 до ‑200°Ц. Они содержат очень много газообразного метана, а Юпитер и Сатурн – также аммиака. В таких условиях высшие земные организмы существовать не могут.

Однако известны бактерии, которые могут жить в метане, хотя при обыкновенных условиях и нуждаются в кислороде. Некоторые из них могут вместо кислорода использовать нитраты, то‑есть азотные соединения.

Метан образуется при сбраживании многих органических веществ. Те же самые бактерии, которые вызывают метановое брожение органических веществ, способны в присутствии молекулярного водорода восстанавливать углекислый газ до метана.

Можно с уверенностью сказать, что в атмосферах планет‑гигантов находится водород. Поэтому присутствие метана в атмосферах этих планет можно объяснить деятельностью бактерий.

Можно предположить, что метан и аммиак образуются в атмосферных глубинах планет‑гигантов также и в результате разложения отживших микроорганизмов и поднимаются из уплотненных внутренних слоев в верхние слои атмосфер.

Это предположение подтверждается и следующими обстоятельствами.

В земных горных породах, а также в вулканических газах обычно присутствует метан. Для разных вулканов содержание метана в выделяющихся из них газах составляет от 3 до 12 процентов. В газах, выделяющихся из графита, – до 40 процентов метана, из базальта – свыше 10 процентов, из гранита – 3 процента. Раньше предполагали, что метан, выделяющийся из горных пород при нагревании, образуется под воздействием воды на карбиды металлов. Однако при нагревании с водой карбидов кальция, натрия, калия выделяется не метан, а ацетилен. Поэтому теперь считают, что источником метана в данных случаях является органическое вещество.

Где же могут существовать на планетах‑гигантах микроорганизмы? Можно думать, что с погружением в атмосферы этих планет температура повышается и на некоторой глубине становится несколько выше нуля, а потому там могут жить бактерии.

Тот факт, что метан и аммиак могут образовываться и без участия организмов (метан, например, имеется в небольших количествах даже на кометах), не является возражением против наших предположений.

Метан (CH 4) состоит из углерода (С) и водорода (Н), а аммиак (NH 3) – из азота (N) и водорода (Н). Но все эти элементы – углерод, водород и азот – имеют изотопы, которые занимают одно и то же место в таблице Менделеева, но имеют разный атомный вес. Так, у углерода два изотопа с атомными весами 12 и 13, у водорода три – с атомными весами 1, 2 и 3 и у азота – два с атомными весами 14 и 15.

Есть основание считать, что изотопный состав метана и аммиака органического происхождения отличается от изотопного состава этих газов неорганического происхождения, а потому должны различаться и их спектры. Следовательно, изучая спектры этих газов органического и неорганического происхождения и сравнивая их со спектрами планет‑гигантов, можно будет решить, есть ли на этих планетах аммиак и метан органического происхождения. Интересно отметить, что при сравнении спектра метана из светильного газа, имеющего органическое происхождение, со спектрами планет‑гигантов получилось полное сходство, тогда как между спектром этих планет и аммиака лабораторного, синтетического, найдено различие.

Итак, есть основание предполагать, что микроорганизмы существуют и на планетах‑гигантах.

 








Дата добавления: 2016-01-26; просмотров: 527;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.