Магнитные системы сепараторов
Для получения неоднородных магнитных полей применяются открытые и замкнутые многополюсные магнитные системы, полиградиентная среда.
В открытых магнитных системах края полюсов чередующейся полярности расположены по плоской (рис. 5.2, б) или цилиндрической поверхности (рис. 5.2, в), как, например, у барабанных сепараторов. В последнем случае полярность полюсов может чередоваться либо по периметру барабана, либо по его оси. Магнитные силовые линии проходят по воздушному пространству над промежутками между полюсами. Такие системы применяют в сепараторах со слабым магнитным полем (напряженностью до 240 кА/м), используемых для извлечения из руд и продуктов обогащения сильномагнитных минералов.
Полюсные концы многополюсной магнитной системы закругляют обычно по дуге радиусом 0,4—0,6 шага полюсов S. Изменение напряженности поля Нх, А/м, по нормали к поверхности полюсов магнитной системы на расстоянии х в этом случае описывается экспоненциальным уравнением А.Я. Сочнева:
где Н0— напряженность поля на уровне поверхности полюсов; Сх — коэффициент неоднородности магнитного поля, зависящий от шага полюсов S и радиуса Rц кривизны поверхности системы, м-1,
Напряженность магнитного поля Н0неоднородна и изменяется вдоль магнитной системы в зависимости от отношения ширины полюса (в) и зазора (а) между соседними полюсами. Близкие значения напряженности поля над серединой полюсов и зазоров между ними обеспечиваются при отношении в/а около 1,2 независимо от шага полюсов. Падение величины магнитной силы μ0Н gradH судалением от поверхности полюсов происходит тем быстрее, чем больше коэффициент неоднородности Сх, который зависит главным образом от шага полюсов S.
Выбор шага полюсов S определяется верхним пределом крупности d?обогащаемой руды или высотой h рабочей зоны сепаратора. Он должен быть тем больше, чем больше крупность обогащаемого материала (в сепараторах с верхней подачей питания) и больше высота рабочей зоны (в сепараторах с нижней подачей питания).
Магнитная система выполняется из постоянных магнитов (литых или керамических) или из стальных сердечников (полюсов) с катушками, питаемыми постоянным или переменным током. При питании постоянным током чередование знака полюсов магнитной системы достигается противоположным направлением тока в обмотках соседних полюсов. При питании переменным электрическим током создается «бегущее магнитное поле».
При воздействии перемещающегося магнитного поля на поверхности магнитной системы происходят переориентация магнитных частиц, разрыхление слоя магнитного материала и частичное разрушение флокул. В сочетании с центробежной силой это приводит к выделению из слоя магнитного продукта случайно захваченных немагнитных зерен, слабомагнитных сростков и повышению за счет этого качества магнитного продукта.
В замкнутых магнитных системах магнитное поле образуется в пространстве между противоположно расположенными разноименными полюсами различной формы и рабочим органом, выполненным в виде валка цилиндрической формы с кольцевыми выступами и впадинами различной конфигурации или горизонтально вращающегося диска с нижней рабочей поверхностью, на которой по периметру имеется кольцевой заостренный выступ для создания неоднородного поля. Такие системы экономичнее открытых многополюсных систем и позволяют создавать поля большой напряженности. Поэтому они применяются в сепараторах с сильным магнитным полем (напряженностью до 1600 кА/м), используемых для извлечения из руд и продуктов обогащения слабомагнитных минералов.
Величина магнитной силы μ0Н gradH в замкнутой магнитной системе в большой степени зависит от формы полюсов и их размеров. Наиболее часто в сепараторах используются сочетания закругленных, трапецеидальных или прямоугольных зубцов с плоским полюсом, закругленных зубцов с желобчатым полюсом (рис. 5.2, г—ж). При сочетании плоского и многозубчатого полюсов (профили г—е) поле неоднородно лишь вблизи зубцов, а с приближением к плоскому полюсу становится близким к однородному. Замена плоского полюса полюсом желобчатым (профиль ж) существенно повышает неоднородность всего поля, увеличивая значения магнитной силы μ0Н gradH. Во всех случаях крупность обогащаемого материала определяется шагом зубцов валка и соотношением магнитной восприимчивости разделяемых минералов.
Полиградиентная среда (рис. 5.2, з) возникает при заполнении рабочего пространства сепаратора мелкими ферромагнитными телам (шариками, стержнями, рифлеными пластинами, стальным волокном и др.). в зазорах между которыми индуцируются сильные магнитные поля.
Полиградиентность среды обусловлена тем, что магнитные силы в таком поле действуют по всем направлениям и на всех участках сближения индукционных магнитов. Благодаря малым размерам они соприкасаются в точке и даже при небольшой напряженности поля в рабочем пространстве прилегающие к этим точкам области характеризуются очень высоким градиентом и, следовательно, большой силой поля. В таких областях и происходит интенсивное притяжение и удерживание тонкоизмельченных слабомагнитных частиц, в то время как немагнитные частицы фильтруются (вымываются) через зазоры между ферромагнитными телами (магнитами-носителями). Чтобы избежать закупорки зазоров, размер ферромагнитных тел. например шариков, должен быть в 10—25 раз больше верхнего предела крупности обогащаемого материала. Однако он не должен превышать 6—8 мм из-за резкого уменьшения величины действующих на частицы магнитных сил. поэтому максимальная крупность обогащаемого материала не должна превышать dmах =8/25 = 0,32 мм. Нижний предел крупности материала при обогащении в полиградиентных сепараторах составляет около 10 мкм.
Дата добавления: 2016-01-26; просмотров: 1329;