Основные гипотезы происхождения Солнечной системы

Немецкий философ Эммануил Кассет в 1755 г. высказал идею происхождения Вселенной из первичной материи, состоящей из мельчайших частиц. Образование звезд, Солнца и других космический тел, по его мнению, произошло под воздействием сил притяжения и отталкивания в условиях хаотического движения частиц. Французский математик П. Лаплас (1796 г.) связывал образование солнечной системы с вращательным движением разряженной и раскаленной газообразной туманности, приведшим к возникновению сгустков материи – зародышей планет. По гипотезе Канта-Лапласа, первоначально раскаленная Земля охлаждалась, сжималась, что привело к деформации земной коры.

По гипотезе О. Ю. Шмидта (1943 г.) планетная система образовалась из пылевой и метеорной материи при попадании ее в сферу Солнца. Первоначально холодные Земля и другие планеты постепенно разогревались под воздействием энергии радиоактивного распада гравитационных и других процессов, а затем остывали.

Советский астроном В. Г. Фесенков в 50-е годы предложил решение проблемы с точки зрения образования Солнца и планет из общей среды, возникшей в результате уплотнения газопылевой материи. При этом предполагалось, что Солнце образовалось из центральной части сгущения, а планеты – из внешней частей.

По современным представлениям, тела Солнечной системы формировались из первично холодной космической твердой и газообразной материи путем уплотнения и сгущения до образования Солнца и прото планет. Астероиды и Метеориты считаются исходным материалом планет Земной группы (Меркурий, Венера, Земля, и Марс – небольшие по размерам; высокая плотность, малая масса атмосферы, небольшая скорость вращения вокруг своей оси); а кометы и метеоры – планет-гигантов (Юпитер, Сатурн, Уран, Нептун, Плутон – огромные размеры, низкая плотность, плотная атмосфера с H2, Ge и метаном, высокая скорость вращения). Формирование современных оболочек Земли связывается с процессами гравитационной дифференциации первоначального однородного вещества.

Самая передовая гипотеза – это объяснение возникновения Вселенной теорией Большого взрыва. В соответствии с этой теорией ~ 15 млрд. лет назад наша Вселенная была сжата в комок, в миллиарды раз меньше булавочной головки. По математическим расчетам ее диаметр был равен, а плотность близка к бесконечности. Такое состояние называетсясингулярным – бесконечная плотность в точечном объеме. Неустойчивое исходное состояние вещества привело к взрыву, породившему скачкообразный переход к расширяющейся Вселенной.

Самый ранний этап развития Вселенной называется инфляционным – его период до 10-33 секунды после взрыва. В результате возникают пространство и время. Размеры Вселенной в несколько раз превышают размеры современной, вещество отсутствует.

Следующий этап – горячий. Выброс тела связан с высвободившейся энергией при Большом взрыве. Излучение нагрело Вселенную до 1027 К. Затем наступил период остывания Вселенной в течение ~500 тысяч лет. В результате возникла однородная Вселенная. Переход от однородной к структурной происходил от 1 до 3 млрд. лет.

 

1. Строение Солнца.

Солнце - центральное тело Солнечной системы, раскаленный плазменный шар, типичная звезда-карлик спектрального класса G2:

· масса М~2·1030 кг

· радиус R=696 т. км,

· средняя плотность 1,416·103 кг/м3

· светимость L=3,86·1023кВт

· эффективная температура поверхности (фотосферы) около 6000 К

Период вращения (синодический) изменяется от 27 суток на экваторе до 32 суток у полюсов, ускорение свободного падения 274 м/с2. Химический состав, определенный из анализа солнечного спектра: водород — около 90%, гелий — 10%, остальные элементы — менее 0,1% (по числу атомов). Источник солнечной энергии — ядерные превращения водорода в гелий в центральной области Солнца, где температура 15 млн. К. Энергия из недр переносится излучением, а затем во внешнем слое толщиной около 0,2 R — конвекцией.

 

о современным представлениям, Солнце состоит из ряда концентрических сфер, или областей, каждая из которых обладает специфическими особенностями. Схематический разрез Солнца показывает его внешние особенности вместе с гипотетическим внутренним строением. Энергия, освобождаемая термоядерными реакциями в ядре Солнца, постепенно прокладывает путь к видимой поверхности светила. Она переносится посредством процессов, в ходе которых атомы поглощают, переизлучают и рассеивают излучение, т.е. лучевым способом. Пройдя около 80% пути от ядра к поверхности, газ становится неустойчивым, и дальше энергия переносится уже конвекцией к видимой поверхностиСолнца и в его атмосферу.

Внутреннее строение Солнца слоистое, или оболочечное, оно состоит из ряда сфер, или областей. В центре находится ядро, затем область лучевого переноса энергии, далее конвективная зона и, наконец, атмосфера. К ней ряд исследователей относят три внешние области: фотосферу, хромосферу и корону. Правда, другие астрономы к солнечной атмосфере относят только хромосферу и корону. Остановимся кратко на особенностях названных сфер.

Ядро - центральная часть Солнца со сверхвысоким давлением и температурой, обеспечивающими течение ядерных реакций. Они выделяют огромное количество электромагнитной энергии в предельно коротких диапазонах волн.

Область лучистого переноса энергии - находится над ядром. Она образована практически неподвижным и невидимым сверхвысокотемпературным газом. Передача через нее энергии, генерируемой в ядре, к внешним сферам Солнца осуществляется лучевым способом, без перемещения газа. Этот процесс надо представлять себе примерно так. Из ядра в область лучевого переноса энергия поступает в предельно коротковолновых диапазонах - гамма излучения, а уходит в более длинноволновом рентгеновском, что связано с понижением температуры газа к периферической зоне.

Конвективная область - располагается над предыдущей. Она образована также невидимым раскаленным газом, находящимся в состоянии конвективного перемешивания. Перемешивание обусловлено положением области между двумя средами, резко различающимися по господствующим в них давлению и температуре. Перенос тепла из солнечных недр к поверхности происходит в результате локальных поднятий сильно нагретых масс воздуха, находящихся под высоким давлением, к периферии светила, где температура газа меньше и где начинается световой диапазон излучения Солнца. Толщина конвективной области оценивается приблизительно в 1/10 часть солнечного радиуса.

Фотосфера- это нижний из трех слоев атмосферы Солнца, расположенный непосредственно на плотной массе невидимого газа конвективной области. Фотосфера образована раскаленным ионизированным газом, температура которого у основания близка к 10000 К (т. е. абсолютная температура), а у верхней границы, расположенной примерно в 300 км выше, порядка 5000 К. Средняя температура фотосферы принимается в 5700 К. При такой температуре раскаленный газ излучает электромагнитную энергию преимущественно в оптическом диапазоне волн. Именно этот нижний слой атмосферы, видимый как желтовато-яркий диск, зрительно воспринимается нами как Солнце.

Через прозрачный воздух фотосферы в телескоп отчетливо просматривается ее основание - контакт с массой непрозрачного воздуха конвективной области. Поверхность раздела имеет зернистую структуру, называемую грануляцией . Зерна, или гранулы, имеют поперечники от 700 до 2000 км. Положение, конфигурация и размеры гранул меняются. Наблюдения показали, что каждая гранула в отдельности выражена лишь какое-то короткое время (около 5-10 мин.), а затем исчезает, заменяясь новой гранулой. На поверхности Солнца гранулы не остаются неподвижными, а совершают нерегулярные движения со скоростью примерно 2 км/сек. В совокупности светлые зерна (гранулы) занимают до 40% поверхности солнечного диска.

Процесс грануляции представляется как наличие в самом нижнем слое фотосферы непрозрачного газа конвективной области - сложной системы вертикальных круговоротов. Светлая ячея - это поступающая из глубины порция более разогретого газа по сравнению с уже охлажденной на поверхности, а потому и менее яркой, компенсационно погружающейся вниз. Яркость гранул на 10-20% больше окружающего фона указывает на различие их температур в 200-300° С.

Образно грануляцию на поверхности Солнца можно сравнить с кипением густой жидкости типа расплавленного гудрона, когда со светлыми восходящими струями появляются пузырьки воздуха, а более темные и плоские участки характеризуют погружающиеся порции жидкости.

Исследования механизма передачи энергии в газовом шаре Солнца от центральной области к поверхности и ее излучение в космическое пространство показали, что она переносится лучами. Даже в конвективной зоне, где передача энергии осуществляется движением газов, большая часть энергии переносится излучением.

Таким образом, поверхность Солнца, излучающая энергию в космическое пространство в световом диапазоне спектра электромагнитных волн, - это разреженный слой газов фотосферы и просматривающаяся сквозь нее гранулированная верхняя поверхность слоя непрозрачного газа конвективной области. В целом зернистая структура, или грануляция, признается свойственной фотосфере - нижнему слою солнечной атмосферы.

Хромосфера. При полном солнечном затмении у самого края затемненного диска Солнцавидно розовое сияние - это хромосфера. Она не имеет резких границ, а представляет собой сочетание множества ярких выступов или языков пламени, находящихся в непрерывном движении. Хромосферу сравнивают иногда с горящей степью. Языки хромосферы называют спикулами. Они имеют в поперечнике от 200 до 2000 км (иногда до 10000) и достигают в высоту нескольких тысяч километров. Их надо представлять себе как вырывающиеся из Солнца потоки плазмы (раскаленного ионизированного газа).

Установлено, что переход от фотосферы к хромосфере сопровождается скачкообразным повышением температуры от 5700 К до 8000 - 10000 К. К верхней же границе хромосферы, находящейся приблизительно на высоте 14000 км от поверхности солнца, температура повышается до 15000 - 20000 К. Плотность вещества на таких высотах составляет всего 10-12 г/см3, т. е. в сотни и даже тысячи раз меньше, чем плотность нижних слоев хромосферы.

Солнечная корона - внешняя атмосфера Солнца. Некоторые астрономы называют ее атмосферой Солнца. Она образована наиболее разреженным ионизированным газом. Простирается примерно на расстояние 5 диаметров Солнца, имеет лучистое строение, слабо светится. Ее можно наблюдать только во время полного солнечного затмения . Яркость короны примерно такая же, как у Луны в полнолуние, что составляет лишь около 5/1000000 долей яркости Солнца. Корональные газы в высокой степени ионизированы, что определяет их температуру примерно в 1 млн. градусов. Внешние слои короны излучают в космическое пространство корональный газ - солнечный ветер. Это второй энергетический (после лучистого электромагнитного) поток Солнца, получаемый планетами. Скорость удаления коронального газа от Солнца возрастает от нескольких километров в секунду у короны до 450 км/сек на уровне орбиты Земли, что связано с уменьшением силы притяжения Солнца при увеличении расстояния. Постепенно разреживаясь по мере удаления от Солнца, корональный газ заполняет все межпланетное пространство. Он воздействует на тела Солнечной системы как непосредственно, так и через магнитное поле, которое несет с собой. Оно взаимодействует с магнитными полями планет. Именно корональный газ (солнечный ветер) является основной причиной полярных сияний на Земле и активности других процессов магнитосферы.

Тема 5. Геологическая эволюция Земли








Дата добавления: 2015-11-28; просмотров: 1007;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.