Электрическим током 1 страница

Исход поражения электрическим током зависит от следующих факторов: электрического сопротивления тела человека, силы протекающего через тело тока, времени воздействия тока, пути протекания тока, частоты и рода тока, индивидуальных особенностей организма человека, условий внешней (окружающей) среды и других факторов.

Величина тока, протекающего через тело человека, зависит от напряжения прикосновения Uпр и сопротивления тела человека Rч:

 

 

Сопротивление тела человека, величина нелинейная, зависящая от многих факторов: сопротивления кожи и ее состояния; от величины тока и приложенного напряжения; от длительности протекания тока.

Сопротивление тела человека при сухой, чистой и неповрежденной коже колеблется от 1000 до 100 000 Ом, а сопротивление слоев тела составляет всего 500-700 Ом.

В качестве расчетной величины при переменном токе промышленной частоты сопротивление тела человека (Rч) принимается равным 1000 Ом. В реальных условиях сопротивление тела человека - величина непостоянная и зависит от ряда факторов.

С ростом тока, проходящего через тело человека, его сопротивление уменьшается, так как при этом увеличивается нагрев кожи и растет потоотделение. По этой же причине снижается Rчс увеличениемпротекания тока. Чем выше приложенное напряжение, тем больше ток человека Iч, тем быстрее снижается сопротивление кожи человек.

С ростом напряжения сопротивление кожи уменьшается в десятки раз, аследовательно, уменьшается и сопротивление тела в целом; оно приближается к сопротивлению внутренних тканей тела, т. е. к своему наименьшему значению (300--500 Ом). Это можно объяснить электрическим пробоем слоя кожи, который происходит при напряжении 50-200 В. Загрязнение кожи различными веществами, в особенности хорошо проводящими электрический ток (металлическая или угольная пыль, окалина и т. п.), снижает ее сопротивление.

Основной поражающий фактор электрического тока - сила тока, проходящего через тело человека. Небольшие токи вызывают лишь неприятные ощущения. При токах, больших 10--15 мА, человек не способен самостоятельно освободиться от токоведущих частей и действие тока становится длительным (неотпускающий ток). При токе, равном 20-25 МА (50 Гц), человек начинает испытывать затруднение дыхания, которое усиливается с ростом тока. При действии такого тока в течение нескольких минут наступает удушье. При длительном воздействии токов величиной несколько десятков миллиампер и времени действия 15-20 смогут наступить паралич дыхания и смерть. Токи величиной 50--80 мА приводят к фибрилляции сердца, которая заключается в беспорядочном сокращении и расслаблении мышечных волокон сердца, в результате чего прекращается кровообращение и сердце останавливается. Действие тока величиной 100 мА в течение 2-3 с приводит к смерти (смертельный ток). При невысоких напряжениях (до 100 В) постоянный ток примерно в 3-4 раза менее опасен, чем переменный частотой 50 Гц; при напряжениях 400-500 В. опасность их сравнивается, а при более высоких напряжениях постоянный ток даже опаснее переменного.

Наиболее опасен ток промышленной частоты (20-100 Гц). Снижение опасности действия тока на живой организм заметно сказывается при частоте 1000 Гц и выше. Токи высокой частоты, начиная от сотен килогерц, вызывают только ожоги, не поражая внутренних органов. Это объясняется тем, что такие токи не способны вызывать возбуждение нервных и мышечных тканей.

Максимальной чувствительностью обладает спинной мозг, имеющий сопротивление не более 0.5 ОМ.

Воздействие электротока индивидуально:

1.Порог ощущения электротока у женщин на 30, а у детей на 50% ниже, чем у мужчин (это объясняется более слабым физическим развитием женщин);

2. Для одного человека электроток может быть уже неотпускающим (судорожное сокращение мышц кистей рук), а для другого только слабо ощутимым;

3. Люди с большей массой тела и лучшей физической подготовкой переносят воздействие электротока легче;

4. Больные (особенно с нервными расстройствами, кожными и сердечно – сосудистыми заболеваниями)переносят воздействие электротока тяжелее;

5. Повышенная чувствительность к электротоку отмечается при утомлении и в состоянии опьянения;

6. Чем более сосредоточен и внимателен человек в момент воздействия электротока, тем меньше он пострадает, так как такое состояние способствует упорядочению внутренних биологических полей и, соответственно, разрушить их сложнее.

Возможные схемы поражения человека электротоком:

Очень опасные, но встречаются редко, следующие схемы включения человека в электросеть:

1.Двухфазное включение: петля «голова-руки». При этом электроток проходит через жизненно важные органы человека: головной мозг, сердце и легкие;

2. Однофазное включение с глухозаземленнойнейтралью: петля « голова–ноги». В этом случае электроток проходит через все тело человека, поражая жизненно важные органы.

Менее опасные схемы включения, но встречающиеся чаще, следующие:

1.Однофазное включение: петля «рука-ноги». Статически до 87% от всех электротравм;

2.Двухфазное включение: петля «рука-рука». Электроток проходит через грудную клетку человека поражаются сердце и легкие;

3. При контакте электрического проводника с землей, при пробое изоляции на землю в электрической установке, а также в местах расположения заземления или грозозащитного устройства, поверхность земли может оказаться под электрическим напряжением. Возникает, так называемое, шаговое напряжение для двух точек (разность потенциалов), расположенных на разных расстояниях от места касания проводника и земли Возникает петля «нога-нога».

На исход поражения электрическим током влияют условия внешней среды (температура, влажность) и окружающая обстановка (наличие токопроводящей пыли, едких паров и газов). Повышенная температура, влажность повышают опасность поражения электрическим током. Чем ниже атмосферное давление, тем выше опасность поражения. Сырость, едкие пары и газы разрушающе действуют на изоляцию электроустановок.

Электроустановки классифицируют по напряжению: с номинальным напряжением до 1000В и свыше 1000 В. Безопасность обслуживания электрооборудования также зависит от факторов окружающей среды. В зависимости от наличия условий, повышающих опасность воздействия тока на человека, все помещения по опасности поражения людей электрическим током делят на следующие классы:

• первый - помещения без повышенной опасности, в которых отсутствуют условия, создающие повышенную и особую опасность;

• второй - помещения с повышенной опасностью, характеризуются наличием в них хотя бы одного из перечисленных признаков: сырости (относительная влажность воздуха длительно превышает 75 %); высокой температуры (выше + 35 ОС); токопроводящей пыли; токопроводящих полов; возможности одновременного прикосновения человека к имеющим соединения с землей металл 0-конструкциям зданий, с одной стороны, и металлическим корпусам электрооборудования - с другой;

• третий - помещения особо опасные, характеризующиеся следующими признаками: относительной влажностью воздуха, близкой к 100 % (визуально определяют наличием конденсата на внутренней поверхности строительных конструкций зданий и помещений); химически агрессивной средой; наличием одновременно двух или более признаков помещений с повышенной опасностью; а также территории размещения наружных электроустановок.

По способу защиты человека от поражения электрическим током электротехнические изделия делят на пять классов: 0,01,1,2, 3.

К классу 0 относят изделия с номинальным напряжением более 42 В с рабочей изоляцией и не имеющих приспособлений для заземления. Бытовые приборы изготавливают по классу 0, так как они предназначены для работы в помещениях без повышенной опасности.

Класс 01 включает в себя изделия с рабочей изоляцией, элементом заземления. У провода для присоединения к источнику питания нет заземляющей жилы.

Класс 1 включает в себя изделия с рабочей изоляцией, элементом для заземления и проводом питания с заземляющей (зануляющей) жилой и штепсельной вилкой с заземляющим контактом.

К классу 2 относят изделия, имеющие у всех доступных прикосновению частей двойную или усиленную изоляцию относительно частей, нормально находящихся под напряжением, и не имеющие элементов заземления.

Класс 3 представляет собой изделия без внутренних и внешних электрических цепей с напряжением не выше 42 В.

 


Лекция 5. ОБЕСПЕЧЕНИЕ КОМФОРТНЫХ УСЛОВИЙ ДЛЯ ЖИЗНИ И ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА

Обеспечение комфортных условий для жизни и деятельности человека. Взаимосвязь условий жизнедеятельности со здоровьем и производительностью труда. Климатическая, воздушная, световая, акустическая и психологическая среды, влияние среды на самочувствие, состояние здоровья и работоспособность человека. Психофизиологические и эргономические условия организации и безопасности труда. Комфортные условия труда. Влияние оптимальных условий труда на производительность человека.

 

Промышленная вентиляция и кондиционирование

Эффективным средством обеспечения надлежащей чистоты и допустимых параметров микроклимата воздуха рабочей зоны является промышленная вентиляция. Вентиляцией называется организованный и регулируемый воздухообмен, обеспечивающий удаление из помещения загрязненного воздуха и подачу на его место свежего.

По способу перемещен™ воздуха различают системы естественной и механической вентиляции. Система вентиляции, перемещение воздушных масс в которой осуществляется благодаря возникающей разности давлений снаружи и внутри здания, называется естественной вентиляцией. Разность давлений обусловлена разностью плотностей наружного и внутреннего воздуха (гравитационное давление, или тепловой напор АРТ) и ветровым напором АРв, действующим на здание.

При действии ветра на поверхностях здания с подветренной стороны образуется избыточное давление, на заветренной стороне — разряжение. Распределение давлений по поверхности зданий и их значения зависят от направлен™ и силы ветра, а также от взаиморасположения зданий.

Неорганизованная естественная вентиляция — инфильтрация, или естественное проветривание, — осуществляется сменой воздуха в помещениях через неплотности в ограждениях и элементах строительных конструкций благодаря разности давлений снаружи и внутри помещения. Такой воздухообмен зависит от случайных факторов —

Рис. 9.1. Схема естественной канальной вытяжной вентиляции:

hi — нижний ярус окон; h2 — верхний ярус

силы и направления ветра, температуры воздуха внутри и снаружи здания, вида ограждений и качества строительных работ. Инфильтрация может быть значительной для жилых зданий и достигать 0,5... 0,7 5 объема помещения в час, а для промышленных предприятий — до 1...1,5 ч-1.

Для постоянного воздухообмена, требуемого по условиям поддержания чистоты воздуха в помещении, необходима организованная вентиляция. Организованная естественная вентиляция может быть вытяжной без организованного притока воздуха (канальная) и при- точно-вытяжной с организованным притоком воздуха (канальная и бесканальная аэрация). Канальная естественная вытяжная вентиляция без организованного притока воздуха (рис. 9.1) широко применяется в жилых и административных зданиях. Расчетное гравитацион­ное давление таких систем вентиляции определяют при температуре наружного воздуха + 5°С, считая, что все давление падает в тракте вытяжного канала, при этом сопротивление входу воздуха в здание не учитывается. При расчете сети воздуховодов прежде всего производят ориентировочный подбор их сечений, исходя из допустимых скоростей движения воздуха в каналах верхнего этажа 0,5...0,8 м/с, в каналах нижнего этажа и сборных каналах верхнего этажа — 1,0 м/с и в вытяжной шахте — 1...1,5 м/с.

Для увеличения располагаемого давления в системах естественной вентиляции на устье вытяжных шахт устанавливают насадки-дефлекторы. Наибольшее распространение получили дефлекторы типа ЦАГИ (рис. 9.2), которые представляют собой цилиндрическую обечайку, укрепленную над вытяжным патрубком, заканчивающимся плавным диффузором. Поток ветра, обтекая обечайку, создает вокруг большей части ее периметра разряжение, обеспечивающее подсос воздуха из вытяжного патрубка. Разрежение, создаваемое дефлектором, и количество удаляемого воздуха зависят от скорости ветра и могут быть определены с помощью номограмм. у и Аэрацией называется организованная ес- тественная общеобменная вентиляция помещений в результате поступления и удаления воздуха через открывающиеся фрамуги окон и фонарей. Воздухообмен в помещении регулируют различной степенью открывания фрамуг (в зависимости от температуры наружного воздуха, скорости и направления ветра). Как способ вентиляции аэрация нашла широкое применение в промышленных зданиях, характеризую­щихся технологическими процессами с большими тепловыделениями (прокатных цехах, литейных, кузнечных). Поступление наружного воздуха в цех в холодный период года организуют так, чтобы холодный воздух не попадал в рабочую зону. Для этого наружный воздух подают в помещение через проемы, расположенные не ниже 4,5 м от пола (рис. 9.3), в теплый период года приток наружного воздуха ориентируют через нижний ярус оконных проемов (h = 1,5...2 м).

При расчете аэрации определяют требуемую площадь проходного сечения проемов и аэрационных фонарей для подачи и удаления необходимого количества воздуха. Исходными данными являются конструктивные размеры помещений, проемов и фонарей, величины теплопродукции в помещении, параметры наружного воздуха. Согласно СНиП 2.04.05—91, расчет рекомендуется выполнять на действие гравитационного давления. Ветровой напор надлежит учитывать только при решении вопросов защиты вентиляционных проемов от задувания.

Основным достоинством аэрации является возможность осуществлять большие воздухообмены без затрат механической энергии. К недостаткам аэрации следует отнести то, что в теплый период года эффективность аэрации может существенно падать вследствие повышения температуры наружного воздуха и того, что поступающий в помещение воздух не очищается и не охлаждается.

Вентиляция, с помощью которой воздух подается в производственные помещения или удаляется из них по системам вентиляционных каналов с использованием для этого специальных механических побудителей, называется механической вентиляцией.

Механическая вентиляция по сравнению с естественной имеет ряд преимуществ: большой радиус действия вследствие значительного давления, создаваемого вентилятором; возможность изменять или сохранять необходимый воздухообмен независимо от температуры наружного воздуха и скорости ветра; подвергать вводимый в помещение воздух предварительной очистке, осушке или увлажнению, подогреву или охлаждению; организовывать оптимальное воздухорас-пределение с подачей воздуха непосредственно к рабочим местам; улавливать вредные выделения непосредственно в местах их образования и предотвращать их распространение по всему объему помещения, а также возможность очищать загрязненный воздух перед выбросом его в атмосферу. К недостаткам механической вентиляции следует отнести значительную стоимость сооружения и эксплуатации ее и необходимость проведения мероприятий по борьбе с шумом.

Рис. 9.4. Принципиальная схема вентиляции для выбора соотношения объемов приточного и удаляемого воздуха:

Системы механической вентиляции подразделяются на общеобменные, местные, смешанные, аварийные и системы кондиционирования.

Общеобменная вентиляция предназначена для ассимиляции избыточной теплоты, влаги и вредных веществ во всем объеме рабочей зоны помещений. Она применяется в том случае, если вредные выделения поступают непосредственно в воздух помещения, рабочие места не фиксированы, а располагаются по всему помещению. Обычно объем воздуха Lup, подаваемого в помещение при общеобменной вентиляции, равен объему воздуха LB, удаляемого из помещения. Однако в ряде случаев возникает необходимость нарушить это равенство (рис. 9.4). Так, в особо чистых цехах электровакуумного производства, для которых большое значение имеет отсутствие пыли, объем притока воздуха делается больше объема вытяжки, за счет чего создается некоторый избыток давления в производственном помещении, что исключает попадание пыли из соседних помещений. В общем случае разница между объемами приточного и вытяжного воздуха не должна превышать 10...15 %.

Существенное влияние на параметры воздушной среды в рабочей зоне оказывают правильная организация и устройство приточных и вытяжных систем.

Воздухообмен, создаваемый в помещении вентиляционными устройствами, сопровождается циркуляцией воздушных масс в несколько раз больших объема подаваемого или удаляемого воздуха. Возникающая циркуляция является основной причиной распространения и перемешивания вредных выделений и создания в помещении разных по концентрации и температуре воздушных зон. Так, приточная струя, входя в помещение, вовлекает в движение окружающие массы воздуха, в результате чего масса струи в направлении движения будет возрастать, а скорость падать. При истечении из круглого отверстия (рис. 9.5) на расстоянии 15 диаметров от устья скорость струи составит 20 % от первоначальной скорости v0, а объем перемещающегося воздуха увеличится в 4,6 раза.

Скорость затухания движения воздуха зависит от диаметра выпускного отверстия d0: чем больше d0, тем медленнее затухание. Если нужно быстрее погасить скорость приточных струй, подаваемый воздух должен быть разбит на большое число мелких струй.

Существенное влияние на траекторию струи оказывает температура приточного воздуха: если температура приточной струи выше температуры воздуха помещения, то ось загибается вверх, если ниже, то вниз и при изотермическом течении она совпадает с осью приточного отверстия.

К всасывающему отверстию (вытяжная вентиляция) воздух натекает со всех сторон, вследствие чего и падение скорости происходит весьма интенсивно (рис. 9.6). Так, скорость всасывания на расстоянии одного диаметра от отверстия круглой трубы равна 5 % v0.

Циркуляция воздуха в помещении и соответственно концентрация примесей и распределение параметров микроклимата зависят не только от наличия приточных и вытяжных струй, но и от их взаимного расположения. Различают четыре основные схемы организации воздухообмена при общеобменной вентиляции: сверху — вниз, сверху — вверх; снизу — вверх. Кроме этих схем, применяют комбинированные. Наиболее равномерное распределение воздуха достигается в том случае, когда приток равномерен по ширине помещения, а вытяжка сосредоточенна.

При организации воздухообмена в помещениях необходимо учитывать и физические свойства вредных паров и газов и в первую очередь их плотность. Если плотность газов ниже плотности воздуха, то удаление загрязненного воздуха происходит в верхней зоне, а подача свежего — непосредственно в рабочую зону. При выделении газов с плотностью, большей плотности воздуха, из нижней части помещения удаляется 60...70 % и из верхней части 30...40 % загрязненного воздуха. В помещениях со значительными выделениями влаги вытяжка влажного воздуха осуществляется в верхней зоне, а подача свежего в количестве 60 % — в рабочую зону и 40 % — в верхнюю зону.

По способу подачи и удаления воздуха различают четыре схемы общеобменной вентиляции (рис. 9.8): приточная, вытяжная, приточно-вытяжная и системы с рециркуляцией. По приточной системе воздух подается в помещение после подготовки его в приточной камере. В помещении при этом создается избыточное давление, за счет которого воздух уходит наружу через окна, двери или в другие помещения. Приточную систему применяют для вентиляции помещений, которые нежелательно попадание загрязненного воздуха из соседних по­мещений или холодного воздуха извне.

Вытяжная система предназначена для удаления воздуха из помещения. При этом в нем создается пониженное давление и воздух соседних помещений или наружный воздух поступает в данное помещение. Вытяжную систему целесообразно применять в том случае, если вредные выделения данного помещения не должны распространяться на соседние, например для вредных цехов, химических и биологических лабораторий.

Чистый воздух поступает в производственное помещение через неплотности в ограждающих конструкциях, что является недостатком данной системы вентиляции, так как неорганизованный приток холодного воздуха (сквозняки) может вызвать простудные заболевания.

Приточно-вытяжная вентиляция — наиболее распространенная система, при которой воздух подается в помещение приточной системой, а удаляется вытяжной; системы работают одновременно.

В отдельных случаях для сокращения эксплуатационных расходов на нагревание воздуха применяют системы вентиляции с частичной рециркуляцией (см. рис. 9.8, в). В них к поступающему снаружи воздуху подмешивают воздух, отсасываемый из помещения П вытяжной системой. Количество свежего и вторичного воздуха регулируют клапа­нами 77 и 72. Свежая порция воздуха в таких системах обычно составляет 20... 10 % общего количества подаваемого воздуха. Систему вентиляции с рециркуляцией разрешается использовать только для тех помещений, в которых отсутствуют выделения вредных веществ или выделяющиеся вещества относятся к 4-му классу опасности, и концентрация их в воздухе, подаваемом в помещение, не превышает 30 % предельно допустимой концентрации (СПдк). Применение рециркуляции не допускается и в том случае, если в воздухе помещений со­держатся болезнетворные бактерии, вирусы или имеются резко выраженные неприятные запахи.

Отдельные установки общеобменной механической вентиляции могут не включать всех указанных выше элементов. Например, приточные системы не всегда оборудуются фильтрами и устройствами для изменения влажности воздуха, а иногда приточные и вытяжные установки могут не иметь сети воздуховодов.

Расчет потребного воздухообмена при общеобменной вентиляции производят, исходя из условий производства и наличия избыточной теплоты, влаги и вредных веществ. Для качественной оценки эффективности воздухообмена применяют понятие кратности воздухообмена кв — отношение количества воздуха, поступающего в помещение в единицу времени L (м3/ч), к объему вентилируемого помещения Vn (м3). При правильно организованной вентиляции кратность воздухообмена должна быть значительно больше единицы.

При нормальном микроклимате и отсутствии вредных выделений количество воздуха при общеобменной вентиляции принимают в зависимости от объема помещения, приходящегося на одного работающего. Отсутствие вредных выделений — это такое их количество в технологическом оборудовании, при одновременном выделении которых в воздухе помещения концентрация вредных веществ не превысит предельно допустимую. В производственных помещениях с объемом воздуха на каждого работающего должен быть не менее 30 м /ч. при наличии естественной вентиляции воздухообмен не рассчитывают. В случае отсутствия естественной вентиляции (герметичные кабины) расход воздуха на одного работающего должен составлять не менее 60 м3/ч. Необходимый воздухообмен для всего производственного помещения в целом

При определении потребного воздухообмена для борьбы с теплоизбытками составляют баланс явной теплоты помещения. При отсутствии в производственном помещении местных отсосов уравнение теплового баланса принимает вид:

В летнее время вся теплота, которая поступает в помещение, является суммой теплоизбытков. В холодный период года часть тепловыделений в помещении расходуется на компенсацию теплопотерь

Температура наружного воздуха в теплый период года принимается равной средней температуре самого жаркого месяца в 13 ч. Расчетные температуры для теплого и холодного периодов года приведены в СНиП 2.04.05—91. Температура удаляемого из помещения воздуха

При равенстве количества приточного (Znp) и удаляемого (ZB) системой вентиляции воздуха и отсутствия в производственном помещении местных отстоев, равномерном распределении по помещению и, принимая, что концентрация вредных веществ в воздухе рабочей зоны остается постоянной в течение рабочей смены и равной предельно допустимой

Концентрация вредных веществ в приточном воздухе должна быть по возможности минимальной и не превышать 30 % ПДК.

Необходимый воздухообмен для удаления избыточной влаги находят исходя из материального баланса по влаге и при отсутствии в производственном помещении местных отсосов определяют по формуле

При одновременном выделении в рабочую зону вредных веществ, не обладающих однонаправленным действием на организм человека, например теплоты и влаги, необходимый воздухообмен принимают по наибольшему количеству воздуха, полученному в расчетах для каждого вида производственных выделений.

При одновременном выделении в воздух рабочей зоны нескольких вредных веществ однонаправленного действия (серный и сернистый ангидрид; оксиды азота совместно с оксидом углерода и др., см. СН 245—71) расчет общеобменной вентиляции надлежит производить путем суммирования объемов воздуха, необходимых для разбавления каждого вещества в отдельности до его условных предельно допустимых концентраций [с,], учитывающих загрязнения воздуха другими веществами. Эти концентрации меньше нормативных и определяются из уравнения

С помощью местной вентиляции необходимые метеорологические параметры создаются на отдельных рабочих местах. Например, улавливание вредных веществ непосредственно у источника возникновения, вентиляция кабин наблюдения и т. д. Наиболее широкое распространение находит местная вытяжная локализующая вентиляция. Основной метод борьбы с вредными выделениями заключается в устройстве и организации отсосов от укрытий.

Конструкции местных отсосов могут быть полностью закрытыми, полуоткрытыми или открытыми (рис. 9.9). Наиболее эффективны закрытые отсосы. К ним относятся кожухи, камеры, герметично или плотно укрывающие технологическое оборудование (см. рис. 9.9, а). Если такие укрытия устроить невозможно, то применяют отсосы с частичным укрытием или открытые: вытяжные зонты, отсасывающие панели, вытяжные шкафы, бортовые отсосы и др.

Один из самых простых видов местных отсосов — вытяжной зонт (см. рис. 9.9, ж). Он служит для улавливания вредных веществ, имеющих меньшую плотность, чем окружающий воздух. Зоны устанавливают над ваннами различного назначения, электро- и индукционными печами и над отверстиями для выпуска металла и шлака из вагранок. Зонты делают открытыми со всех сторон и частично открытыми с одной, двух и трех сторон. Эффективность работы вытяжного зонта зависит от размеров, высоты подвеса и угла его раскрытия. Чем больше размеры и чем ниже установлен зонт над местом выделения веществ, тем он эффективнее. Наиболее равномерное всасывание обеспечивается при угле раскрытия зонта не менее 60°.

Отсасывающие панели применяют для удаления вредных выделений, увлекаемых конвективными токами, при таких ручных операциях, как электросварка, пайка, газовая сварка, резка металла и т. п. Вытяжные шкафы — наиболее эффективное устройство по сравнению с другими отсосами, так как почти полностью укрывают источник выделения вредных веществ. Незакрытыми в шкафах остаются лишь проемы для обслуживания, через которые воздух из помещения поступает в шкаф. Форму проема выбирают в зависимости от характера технологических операций.

Необходимый воздухообмен в устройствах местной вытяжной вентиляции рассчитывают, исходя из условия локализации примесей, выделяющихся из источника образования. Требуемый часовой объем отсасываемого воздуха определяют как произведение площади приемных отверстий отсоса F (м2) на скорость воздуха в них. Скорость воздуха в проеме отсоса v (м/с) зависит от класса опасности вещества и типа воздухоприемника местной вентиляции (v = 0,5...5 м/с).

Смешанная система вентиляции является сочетанием элементов местной и общеобменной вентиляции. Местная система удаляет вредные вещества из кожухов и укрытий машин. Однако часть вредных веществ через неплотности укрытий проникает в помещение. Эта часть удаляется общеобменной вентиляцией.

Аварийная вентиляция предусматривается в тех производственных помещениях, в которых возможно внезапное поступление в воздух большого количества вредных или взрывоопасных веществ. Производительность аварийной вентиляции определяют в соответствии с требованиями нормативных документов в технологической части проекта. Если такие документы отсутствуют, то производительность аварийной вентиляции принимается такой, чтобы она вместе с основной вентиляцией обеспечивала в помещении не менее восьми воздухообменов за 1 ч. Система аварийной вентиляции должна включаться автоматически при достижении ПДК вредных выделений или при остановке одной из систем общеобменной или местной вентиляции. Выброс воздуха аварийных систем должен осуществляться с учетом возможности максимального рассеивания вредных и взрыво­опасных веществ в атмосфере.

Для создания оптимальных метеорологических условий в производственных помещениях применяют наиболее совершенный вид промышленной вентиляции — кондиционирование воздуха. Кондиционированием воздуха называется его автоматическая обработка с целью поддержания в производственных помещениях заранее заданных метеорологических условий независимо от изменения наружных условий и режимов внутри помещения. При кондиционировании автоматически регулируются температура воздуха, его относительная влажность и скорость подачи в помещение в зависимости от времени года, наружных метеорологических условий и характера технологического процесса в помещении. Такие строго определенные параметры воздуха создаются в специальных установках, называемых кондиционерами. В ряде случаев помимо обеспечения санитарных норм микроклимата воздуха в кондиционерах производят специальную обработку: ионизацию, дезодорацию, озонирование и т. п.








Дата добавления: 2016-01-20; просмотров: 1527;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.021 сек.