Последовательностные схемы

 

Последовательностные схемы или цифровые автоматы (ЦА) с памятью составляют другой, более сложный класс преобразователей дискретной информации. В отличие от КС они имеют некоторое конечное число различных внутренних состояний. Выходные сигналы ЦА в данном такте определяются в общем случае входными сигналами, поступившими на вход ЦА в этом такте, и внутренним состоянием автомата, которое явилось результатом воздействия на автомат входных сигналов в предыдущие такты.

Комбинация входных сигналов и текущего состояния ЦА в данном такте определяет не только выходные сигналы, но и то состояние, в которое автомат перейдет к началу следующего такта.

Функции перехода и выходов могут задаваться в форме таблиц или с помощью графов. При задании в виде графов состояния автомата представляют вершинами, а переходы из состояния в состояние – дугами. На дугах указываются значения входных сигналов, вызывающих соответствующие переходы.

Примерами простейших конечных ЦА являются триггеры .

 

Триггеры

 

RS-триггер

 

Триггером (Т) называют логическую схему с положительной обратной связью, имеющую два устойчивых состояния, которые называются единичным и нулевым и обозначаются 1 и 0. Перевод триггера в единичное состояние путем воздействия на его входы называют установкой (set) триггера, а устанавливающий сигнал и вход, на который он воздействует, обозначают S (от set). Перевод триггера в нулевое состояние называют сбросом (reset), а соответствующий сигнал и вход обозначают R.

Схема простейшего триггера (рис.4.1,а) получается, если включить кольцом два элемента И-НЕ. Такой триггер имеет два входа R и S, два выхода Q и называется RS-триггером. Его обозначение на функциональных схемах показано на рис. 4.1, б.

а) б) в)

Рис.4.1. RS-триггер на элементах И-НЕ

Пока на обоих управляющих входах R и S уровни сигналов не активны, в данном случае R=S=1, триггер находится в каком-либо одном из двух устойчивых состояний. Если значение сигнала на выходе Q равно 1, то, как видно из схемы, этот единичный сигнал, поступая по цепи обратной связи на вход элемента 2, вызывает появление на выходе сигнала с нулевым уровнем. В свою очередь нулевой уровень выхода , поступая на вход элемента 1, поддерживает Q в состоянии 1. Иначе говоря, при входных сигналах R и S, равных 1, появившаяся по любой причине на выходе Q единица по цепи обратной связи будет сама себя поддерживать сколь угодно долго. Когда на прямом выходе Q сигнал равен 1, говорят, что триггер находится в состоянии 1 или что он установлен.

В силу симметрии схемы она будет столь же устойчива в своем противоположном - нулевом состоянии, когда Q =0, а =1. В этом случае говорят, что триггер сброшен. Режим RS-триггера, когда оба управляющих сигнала R и S неактивны, называют режимом хранения.

На рис. 4.1,в показана временная диаграмма переходных процессов в схеме при подаче на нее управляющих сигналов. Исходное состояние триггера - нулевое, на его входы поступают по очереди сначала сигнал S, затем, после его окончания - сигнал R.

Из диаграммы видно, что после окончания входного сигнала триггер способен сохранять свое новое состояние также сколь угодно долго. Говорят, что триггер запоминает входной сигнал. Это специфическое и очень важное свойство триггера, отличающее его от всех рассмотренных ранее схем, не имевших обратных связей: после исчезновения входного сигнала выходной сигнал в тех схемах также исчезал.

Если на входы R и S подать одновременно нулевые сигналы, то на обоих выходах Q и появятся единицы . Если теперь одновременно снять нули со входов R и S, то оба элемента начнут переключаться в нулевое состояние, каждый стремясь при этом оставить своего партнера в состоянии 1. Какой элемент одержит в этом поединке победу, будет зависеть от скоростей переходных процессов и ряда других неизвестных заранее факторов. Для разработчика схемы результирующее состояние триггера оказывается неопределенным, неуправляемым. Поэтому комбинация R=S=0 считается запрещенной, и в обычных условиях ее не используют. Такую комбинацию допустимо применять, лишь когда обеспечено не одновременное, а строго поочередное снятие R и S-сигналов.

Основное назначение триггеров в цифровых схемах - хранить выработанные логическими схемами результаты. Для отсечения еще не установившихся, искаженных переходными процессами результатов между выходом логической схемы и входом триггера можно включить конъюнкторы, управляемые синхросигналом . Это решение оказалось очень эффективным, быстро стало типовым и побудило изготовителей триггеров ввести конъюнкторы в состав триггера. Так появились синхронные триггеры, которые переключаются в состояние, предписываемое управляющими входами, лишь по сигналу синхронизации, поступающему на вход С триггера.

а) б)

Рис. 4.2. Синхронный RS-триггер

Схема простейшего синхронного RS-триггера показана на рис.4.2,а. При С=0 триггер 3-4 отключен от управляющих S и R входов и находится в режиме хранения ранее полученной информации. При С=1 схема функционирует как обычный RS-триггер. Условное изображение синхронного RS-триггера показано на рис.4.2,б. Синхровход С может в принципе иметь и активный низкий уровень; в этом случае он, как обычно, помечается кружочком. Характерной особенностью схемы является то, что в течение всего отрезка времени, когда синхросигнал равен 1, как сами потенциалы на управляющих S и R входах, так и любые их изменения тут же передаются на выход.

О такой схеме можно сказать, что она прозрачна по S - и R - входам при C=1. Не все схемы синхронных триггеров обладают этим свойством.

 

D - триггер типа «защелка»

 

D-триггером называют синхронный триггер, имеющий два входа: вход данных D и вход синхронизации С. Этот тип триггера исключительно широко используется в цифровых устройствах. Другие его названия: прозрачная защелка (transparent latch), D-триггер, управляемый уровнем синхросигнала. D-триггер переключается только по сигналу на С-входе и притом в состояние, предписываемое D-входом. Условное обозначение D-триггера показано на рис. 4.3, а.

а) б)

Рис.4.3. D – триггер

 

На рис. 4.3, б показан универсальный способ построения D-триггера из синхронного RS-триггера: с помощью инвертора 1 однофазный вход данных D превращается в парафазный и подается на S- и R -входы.

Изменения D-входа при С= 0 никак не влияют на состояние выхода Q: триггер заперт по С-входу и находится в режиме хранения. Фронт С-сигнала вызывает переключение триггера в то состояние, которое было к этому моменту на входе D. При С=1 защелка прозрачна: любое изменение D-входа вызывает изменение выхода Q. По спаду синхросигнала триггер – защелка фиксирует на выходе то состояние, которое было на D-входе непосредственно перед этим моментом. Следующее изменение Q будет возможно только по фронту следующего синхроимпульса. Если на С-вход подать постоянный единичный уровень, то свойство запоминания у защелки проявляться никак не будет и она будет выполнять функции обычного буферного усилителя мощности в тракте передачи данных.

Чтобы процесс фиксации состояния D-входа прошел без сбоев, т. е. был бы однозначно предсказуемым, переходной процесс в схеме защелки, вызванный срезом С-сигнала, не должен накладываться на переходной процесс, вызванный переключением D-входа. Это значит, что всякие изменения состояния D-входа должны прекратиться за некоторое время до среза С-сигнала, называемое временем подготовки (setup time), и могут снова начинаться после среза С-сигнала не ранее чем через время выдержки (удержания) (hold time).

Необходимость введения и нормирования интервалов подготовки и выдержки характерна не только для защелки, но и для всех функциональных узлов, имеющих вход синхронизации. Кроме того, для защелки, как и для любого синхронного узла, существует минимально допустимая длительность синхроимпульса, обеспечивающая отсутствие сбоев из-за наложения переходных процессов от фронта и среза этого импульса.

Для триггеров-защелок, выпускаемых в виде микросхем, временные характеристики приводятся в справочниках. Примерами выпускаемых промышленностью D-триггеров-защелок могут служить интегральные микросхемы (ИМС) К155ТМ5, К155ТМ7, К561ТМЗ, которые содержат по четыре триггера с объединенными С-входами.

 








Дата добавления: 2016-01-18; просмотров: 1414;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.