Статические источники реактивной мощности
Батареи конденсаторов обладают существенным недостатком – изменение мощности БК носит ступенчатый характер. Источники нового типа – статические источники реактивной мощности (ИРМ или СТК) не обладают этим недостатком. СТК состоит из нерегулируемой батареи конденсаторов и регулируемого реактора. Батарея конденсаторов и реактор могут быть включены и последовательно (рис. 17.12 а), и параллельно (рис. 17.12 б). Плавность регулирования обеспечивает тиристорный блок управления (ТБУ).
Статические источники реактивной мощности применяются на различных напряжениях. Опыт эксплуатации и проведенные исследования позволяют утверждать, что в ряде случаев применение СТК эффективнее применения синхронных компенсаторов.
Больший интерес представляют СТК с параллельным включением батареи конденсаторов и реактора. Суммарная мощность СТК при параллельном соединении равна:
Величины реактивной мощности реактора и батареи конденсаторов определяются следующим образом:
Диапазон изменения мощности СТК (регулировочный диапазон) определяется соотношением мощностей батареи конденсаторов и реактора. Если батарея конденсатор и реактор имеют одинаковую по величине мощность и мощность реактора меняется от нуля до номинальной мощности, то мощность СТК изменяется в диапазоне:
В этом случае СТК генерирует реактивную мощность.
Если мощность реактора больше мощности батареи конденсаторов, то СТК может работать и в режиме генерирования, и в режиме потребления реактивной мощности. Переход из одного режима в другой выполняется плавно.
Недостатки СТК с параллельным включением:
- отрицательный регулирующий эффект (при увеличении напряжения необходимо уменьшить выработку реактивной мощности, происходит ее увеличение);
- резонанс напряжения при переходе из одного режима работы в другой.
Лекция № 18
Методы регулирования напряжения.
Устройства регулирования напряжения
План.
Общие положения.
Регулирование напряжения в центрах питания.
Метод встречного регулирования.
Регулирование напряжения на электростанциях.
Регулирование напряжения на понижающих подстанциях.
5.1 Устройство РПН двухобмоточного трансформатора.
5.2 Устройство РПН автотрансформатора.
Общие положения
Напряжение в узлах сети постоянно меняется из-за изменения нагрузки, режима работы источников питания, схемы сети.
Режим напряжений в электрической сети должен быть таким, чтобы были выполнены требования ГОСТ в отношении допустимых отклонений напряжения для электроприемников, которые питаются от этой сети. Значения отклонений напряжения часто превышают допустимые по следующим причинам:
· большие потери напряжения в сети;
· неправильный выбор сечений токоведущих элементов и мощности силовых трансформаторов;
· неправильное построение схемы сети.
Очень часто эти причины возникают при развитии сети, при ее реконструкции. Поэтому чтобы обеспечить необходимые отклонения напряжения на шинах электроприемником следует применять регулирование напряжения.
Регулированием напряжения называется процесс изменения напряжения в характерных точках сети с помощью специальных технических средств.
Способы регулирования напряжения возникли с возникновением электрических сетей. Их развитие происходило от низших уровней управления к высшим. Сначала использовалось регулирование напряжения в центрах питания распределительных сетей и непосредственно у потребителей и на энергоблоках электростанций. Сейчас эти методы регулирования напряжения называются локальными. По мере развития сетей и объединения их в крупные энергосистемы возникла необходимость координировать работу локальных методов. Координирование относится к высшим уровням регулирования напряжения.
Локальное регулирование может быть централизованным и местным. Централизованное управление выполняется в центрах питания. Местное регулирование проводится непосредственно у потребителей. Регулирование напряжения в центрах питания приводит к изменению режима напряжения во всей сети, которая питается от него. Местное регулирование приводит к изменению режима напряжения в ограниченной части сети.
Дата добавления: 2016-01-07; просмотров: 680;