4 страница. Споры о допустимо возможной численности населения с точки зрения обеспечения питанием в значительной мере относительны

Споры о допустимо возможной численности населения с точки зрения обеспечения питанием в значительной мере относительны, если они не учитывают, какой в среднем удельный вес в рационе отводится животной и растительной пище. Если исходить из рацио­на питания зажиточной части населения, потребляющей мяса 80-100 кг в год на одного человека, то явно невозможно обеспече­ние таким рационом современной численности населения Земли (около 6 млрд. человек). Если же исходить из необходимости обес­печения минимальных потребностей жизнедеятельности организ­ма, при настоящем производстве продуктов питания возможно ис­ключить голод и, кроме того, прокормить на 3-4 миллиарда насе­ления больше современного. Для этого требует решения вопрос более сбалансированного распределения продуктов питания. Пе­реход на вегетарианство и тем более расширение ассортимента растений, используемых в пищу, может обеспечить жизнедеятель­ность (с энергетической точки зрения) численности населения в 2-3 раза больше современной. Ясно, однако, что при этом останут­ся нерешенными многие медико-биологические проблемы здоро­вья и долголетия, а также допустимые пределы антропогенных нагрузок на экосистемы и биосферу в целом.

IV.5. Продуктивность и биомасса экосистем

Одно из важнейших свойств организмов, их популяций и экосистем в целом - способность создавать органическое вещество, которое на­зывают продукцией. Образование продукции в единицу време­ни (час, сутки, год) на единице площади (метры квадратные, гектар) или объема (в водных экосистемах) характеризует про­дуктивность экосистем. Продукция и продуктивность могут опре­деляться для экосистем в целом или для отдельных групп организмов (растений, животных, микроорганизмов) или видов.

Продукцию растений называют первичной, а животных - вторичной. Наряду с продукцией различают биомассу организ­ма, групп организмов или экосистем в целом. Под ней понимают всю живую органическую массу, которая содержится в эко­системе или ее элементах вне зависимости от того, за ка­кой период она образовалась и накопилась. Биомасса и про­дукция (продуктивность) обычно выражаются через абсолютно сухой вес.

Нетрудно понять, что величина биомассы экосистем или их зве­ньев во многом зависит не столько от их продуктивности, сколько от продолжительности жизни организмов и экосистем в целом. Напри­мер, большая биомасса характерна для лесных экосистем: в тропи­ческих лесах она достигает 800-1000 т/га, в лесах умеренной зоны -300-400 т/га, а в травянистых сообществах обычно не выходит за пределы 3-5 т/га. В то же время лесные и травянистые (например, луговые) экосистемы в сходных условиях существования по продук­тивности могут мало различаться или различаются в сторону боль­шей продуктивности как лесных, так и травянистых сообществ.

Для экосистем, представленных однолетними организмами, их годичная продуктивность и биомасса практически совпадают. Для древесных сообществ они резко различаются. Вообще соотноше­ние биомассы и годовой продукции экосистем можно выразить фор­мулой:

где Б - биомасса в данный момент времени, П - годовая про­дукция, Д - дыхание. Под последним применительно к экосисте­мам понимается вся сумма живого вещества, отчуждаемого на процессы разложения в результате гибели целых организмов (от­пад) или их частей - сучьев, коры, листьев, наружных покровов (опад) и потребления гетеротрофами.

Экологические параметры продуктивности. Продукция и биомасса экосистем - это не только ресурс, используемый в пищу или в качестве различных видов сырья (техническое, топливо и т. п.). От этих показателей в прямой зависимости находится средообразующая и средостабилизирующая роль экосистем. Так, с про­дуктивностью растений и их сообществ тесно связана интенсив­ность поглощения углекислого газа и выделения кислорода. Для образования одной тонны растительной продукции (абсолютно су­хой вес) обычно поглощается 1,5-1,8 т углекислого газа и выде­ляется 1,2-1,4 т кислорода. Биомасса, в том числе и мертвое орга­ническое вещество, являются основными резервуарами концент­рации углерода. На суше это практически единственный фактор вывода углекислого газа из процессов круговорота на длительное время. Часть этого органического вещества и вовсе исключается из круговорота или, как отмечал В. И. Вернадский, «уходит в гео­логию» (торф, уголь, нефть и т. п.).

Чаще всего в гумидных (влажных) районах фактором, прерываю­щим круговорот, выступает недостаток кислорода и кислая среда. Здесь основными очагами накопления органики являются болота. На дне глубоких водоемов захоронение органического вещества так­же обусловливается недостатком кислорода или избытком ядови­тых веществ (например, сероводорода). В крайне сухих (аридных) условиях круговорот прерывается чаще всего недостатком влаги.

В связи с тем, что дождевые тропические леса характеризуются максимальной продуктивностью (до 20-25 т/га/год) и биомассой (до 700-1000 т/га), их рассматривают как основные аккумуляторы угле­рода и обогащения атмосферы кислородом, называя «легкими пла­неты». В северных лесах, как известно, продуктивность (6-10 т/га/год) и биомасса (300-400 т/га) значительно ниже. Однако на этом основании северным лесам никак нельзя отводить менее значительную роль в положительном балансе кислорода и углекислоты. Наоборот, их роль в этом отношении часто более значительна. Эти вопросы рассмотрены во второй части учебника.

Есть и другие экологические аспекты продуктивности и биомас­сы экосистем. В частности, чем больше биомасса, тем сильнее ее контакт с окружающей средой и тем значительнее такие средоохранные свойства, как очистка воздуха от пыли и химических аген­тов, регулирование влагооборотов, гашение шумовых воздействий и т. п.

Продуктивность различных экосистем биосферы. До недав­него времени принималось за аксиому, что основной объем первичной продукции образуется в морях и океанах, на долю которых приходится около 70% поверхности земного шара. Однако по последним данным, полученным в основном в результате осуществления Международной биологической программы (МБП), которая проводилась в 1964-1974 гг., было установлено, что основная масса первичной продукции обра­зуется в экосистемах суши (около 115 млрд. тонн в год) и только около 55 млрд. тонн в год - в экосистемах океана (табл. 2). Дело в том, что внутренние воды океана, расположенные за пределами прибрежной (шельфовой) зоны, по продуктивности близки к пустыням наземных экосистем (10-120 г/м2 за год первичной продукции). Для сравнения отметим, что продуктивность лесов тайги составляет в среднем око­ло 700-800, а влажных тропических лесов - 2000-2200 г/м2 за год.

Второй вопрос, на который важно получить ответ: какие же экосис­темы в пределах океана и суши являются наиболее продуктивными?

В. И. Вернадский в свое время выделил очаги наибольшей кон­центрации жизни, назвав их пленками и сгущениями живого ве­щества. Под пленками живого вещества понимается его по­вышенное количество на больших пространствах. В океане обычно выделяют две пленки: поверхностную, или планктон­ную, и донную, или бентосную. Мощность поверхностной пленки обусловливается в основном эуфотической зоной, то есть тем слоем воды, в котором возможен фотосинтез. Она колеблется от несколь­ких десятков и сотен метров (в чистых водах) до нескольких санти­метров (в загрязненных водах). Донная пленка образована в основ­ном гетеротрофными экосистемами, и поэтому ее продукция пред­ставлена вторичной, а количество ее зависит в основном от поступ­ления органического вещества с поверхностной пленки.

В наземных экосистемах также выделяют две пленки живого вещества. Приземная, заключенная между поверхностью почвы и верхней границей растительного покрова, имеет толщину от не­скольких сантиметров (пустыни, тундры, болота и др.) до несколь­ких десятков метров (леса). Вторая пленка - почвенная. Эта плен­ка наиболее насыщена жизнью. На 1 м2 почвенного слоя насчиты­вают миллионы насекомых, десятки и сотни дождевых червей и сотни миллионов микроорганизмов. Толщина данной пленки нахо­дится в прямой зависимости от мощности почвенного слоя и его богатства гумусом. В тундрах и пустынях это несколько санти­метров, на черноземах, особенно тучных, - до 2-3 метров.

Повышенные концентрации живого вещества в биосфере обыч­но приурочены к условиям так называемого «краевого эффек­та», или экотонов. Такой эффект возникает на стыках сред жиз­ни или различных экосистем. В приведенных примерах для водных экосистем поверхностная пленка - это зона контакта атмосферы и водной среды, донная - водной толщи и донных отложений, почвен­ная - атмосферы и литосферы.

Таблица 2

Продуктивность и биомасса экосистем материков и океанов зем­ного шара (Уиттекер, 1980)

Примером повышенной продуктивности на стыках экосистем мо­гут служить переходные экосистемы между лесом и полем («опу­шечный эффект»), а в водных средах - экосистемы, возникающие в эстуариях рек (места впадения их в моря, океаны и озера и т. п.).

Этими же закономерностями во многом обусловливаются упо­минавшиеся выше локальные сгущения больших масс живого ве­щества (наиболее высокопродуктивные экосистемы).

Обычно в океане выделяют следующие сгущения жизни:

1. Прибрежные. Они располагаются на контакте водной и наземно-воздушной среды. Особенно высокопродуктивны экосистемы эстуариев. Протяженность этих сгущений тем значительнее, чем больше вынос реками органических и минеральных веществ с суши.

2. Коралловые рифы. Высокая продуктивность этих экосистем связана прежде всего с благоприятным температурным режимом, фильтрационным типом питания многих организмов, видовым бо­гатством сообществ, симбиотическими связями и другими факто­рами. 3. Саргассовые сгущения. Создаются большими массами плавающих водорослей, чаще всего саргассовых (в Саргассовом море) и филлофорных (в Черном море). 4. Апвеллинговые. Эти сгущения приурочены к районам океана, где имеет место восходя­щее движение водных масс от дна к поверхности (апвеллинг). Они несут много донных органических и минеральных отложений и в результате активного перемешивания хорошо обеспечены кисло­родом. Эти высокопродуктивные экосистемы являются одним из основных районов промысла рыб и других морепродуктов. 5. Рифтовые глубоководные (абиссальные) сгущения. Эти экосисте­мы были открыты только в 70-х годах настоящего столетия. Они уникальны по своей природе: существуют на больших глубинах (2-3 тыс. метров). Первичная продукция в них образуется только в результате процессов хемосинтеза за счет высвобождения энер­гии из сернистых соединений, поступающих из разломов дна (риф­тов). Высокая продуктивность здесь обязана прежде всего благо­приятным температурным условиям, поскольку разломы одновре­менно являются очагами выхода из недр подогретых (термальных) вод. Это единственные экосистемы, не использующие солнечную энергию. Они живут за счет энергии недр Земли.

На суше к наиболее высокопродуктивным экосистемам (сгуще­ниям живого вещества) относят: 1) экосистемы берегов морей и океанов в районах, хорошо обеспеченных теплом; 2) экосис­темы пойм, периодически заливаемые водами рек, которые откладывают ил, а вместе с ним органические и биогенные веще­ства, 3) экосистемы небольших внутренних водоемов, бога­тые питательными веществами, а также 4) экосистемы тро­пических лесов. Продуктивность других экосистем видна из табл.3. Выше мы уже отмечали, что человек должен стремиться сохранить высокопродуктивные экосистемы - этот мощнейший кар­кас биосферы. Его разрушение связано с наиболее значительными отрицательными последствиями для всей биосферы.

Что касается вторичной (животной) продукции, то она заметно выше в океане, чем в наземных экосистемах. Это связано с тем, что на суше в звено консументов (травоядных) в среднем включа­ется лишь около 10% первичной продукции, а в океане - до 50%. Поэтому, несмотря на более низкую первичную продуктивность океана, чем суши, по массе вторичной продукции эти экосистемы примерно равны (см. табл. 2).

В наземных экосистемах основную продукцию (до 50%) и осо­бенно биомассу (около 90%) дают лесные экосистемы. Вместе с тем основная масса этой продукции поступает сразу в звено дест­рукторов и редуцентов. Для таких экосистем характерно преобла­дание детритных (за счет мертвого органического вещества) цепей питания. В травянистых экосистемах (луга, степи, прерии, саванны), как и в океане, значительно большая часть первичной продукции прижизненно отчуждается фитофагами (травоядными животными). Такие цепи носят название пастбищных или це­пей выедання.

IV.6. Экологические пирамиды

Если количество энергии, продукции, биомасс или численности организмов на каждом трофическом уровне изображать в виде пря­моугольников в одном и том же масштабе, то их распределение будет иметь вид пирамид.

Таблица 3

Продуктивность основных экосистем земного шара (по Н. Ф. Реймерсу, 1990)

Правило пирамид энергии можно сформулировать следующим образом: количество энергии, содержащейся в организмах на любом последующем трофическом уровне цепи питания, меньше ее значений на предыдущем уровне (рис. 4а).

Рис. 4

Пирамиды энергии и продукции для экосистем суши и океана - а и биомасс для экосистем океана — б

 

Количество продукции, образующейся в единицу времени на раз­ных трофических уровнях, подчиняется тому же правилу, которое характерно для энергии: на каждом последующем уровне количе­ство продукции меньше, чем на предыдущем (рис. 4а). Более того, суммарное количество вторичной продукции (как и содержащейся в ней энергии), образующейся на разных трофических уровнях, мень­ше первичной продукции. Эта закономерность абсолютна и легко объясняется исходя из правила передачи энергии в цепях питания. Следует также иметь в виду, что различия в количестве энергии, содержащейся в единице веса (объема) отдельных видов продук­ции, невелики: 1 г (сухой вес) растительной и животной продукции содержит чаще всего от 3 до 5 калорий энергии.

Пирамиды биомасс сходны с таковыми для энергии и продук­ции, но только для сухопутных экосистем. Для водных экосистем закономерности соотношения биомасс на различных трофических уровнях имеют свою специфику. Здесь пирамида биомасс как бы перевернута (рис. 4б), то есть биомасса животных, потребляющих растительную продукцию, больше биомассы растительных орга­низмов. Причина этого - резкие различия в продолжитель­ности жизни организмов сравниваемых уровней. Первый уро­вень (продуценты) представлен в основном фитопланктоном с край­не коротким периодом жизни (несколько дней или часов), второй -более долгоживущими организмами - зоопланктоном или другими животными, питающимися фитопланктоном и зоопланктоном (рыбы, моллюски, киты и т. п.). Они накапливают биомассу года­ми и десятилетиями.

Пирамида чисел свидетельствует, что количество организ­мов, как правило, уменьшается от основания к вершине. Это правило не абсолютно и применимо в основном к цепям пита­ния, не включающим редуцентов. Примером может служить пищевая цепь: насекомые и их личинки - насекомоядные жи­вотные - хищники.

IV.7. Динамика и развитие экосистем. Сукцессии

Любая экосистема, приспосабливаясь к изменениям внешней среды, находится в состоянии динамики. Эта динамика может касаться как отдельных звеньев экосистем (организмов, попу­ляций, трофических групп), так и системы в целом. При этом динамика может быть связана, с одной стороны, с адаптациями к факторам, которые являются внешними по отношению к эко­системе, а с другой - к факторам, которые создает и изменяет сама экосистема.

Самый простой тип динамики - суточный. Он связан с измене­ниями в фотосинтезе и транспирации (испарении воды) растений. В еще большей мере эти изменения связаны с поведением животно­го населения. Одни из них более активны днем, другие - в сумер­ки, третьи - ночью. Аналогичные примеры можно привести по от­ношению к сезонным явлениям, с которыми еще больше связана активность жизнедеятельности организмов.

Не остаются неизменными экосистемы и в многолетнем ряду. Если в качестве примера взять лес или луг, то не трудно заме­тить, что в разные годы этим экосистемам свойственны свои особенности. В одни годы мы можем наблюдать увеличение чис­ленности одних видов (на лугах, например, бывают «клеверные годы», годы с резким увеличением злаков и других видов или групп видов). Из этого следует, что каждый вид индивидуален по своим требованиям к среде, и ее изменения для одних видов благоприятны, а на другие, наоборот, оказывают угнетающее влияние. Сказывается также и периодичность в интенсивности размножения.

Эти изменения в одних случаях могут в какой-то мере повто­ряться, в других же имеют однонаправленный, поступательный ха­рактер и обусловливают развитие экосистемы в определенном на­правлении.

Периодически повторяющуюся динамику называют цик­лическими изменениями или флуктуациями, а направлен­ную динамику именуют поступательной или развитием эко­систем. Для последнего вида динамики характерным является либо внедрение в экосистемы новых видов, либо смена одних видов дру­гими. В конечном же счете происходят смены биоценозов и эко­систем в целом. Этот процесс называют сукцессией (лат. сукцессио - преемственность, наследование). Различают обычно первичные и вторичные сукцессии.

Первичные сукцессии. Под первичной обычно понимается сук­цессия, развитие которой начинается на изначально безжизненном субстрате. Ход первичной сукцессии рассмотрим на примере на­земных экосистем. Если взять участки земной поверхности, напри­мер заброшенные песчаные карьеры, в различных географических районах (в лесной, степной зонах либо среди тропических лесов и т. п.), то для всех этих объектов будут характерны как общие, так и специфические изменения в экосистемах.

В качестве общих закономерностей будет иметь место заселение живыми организмами, увеличение их видового раз­нообразия, постепенное обогащение почв органическим веще­ством, возрастание их плодородия, усиление связей между раз­личными видами или трофическими группами организмов, уменьшение числа свободных экологических ниш, постепенное формирование все более сложных биоценозов и экосистем, по­вышение их продуктивности. Более мелкие виды организмов, особенно растительных, при этом, как правило, сменяются бо­лее крупными, интенсифицируются процессы круговорота ве­ществ и т. п. В каждом случае при этом можно выделить пос­ледовательные стадии сукцессий, под которыми пони­мается смена одних экосистем другими, а сукцессионные ряды заканчиваются относительно мало изменяю­щимися экосистемами. Их называют климаксными (греч. климакс - лестница), коренными или узловыми.

Специфические закономерности сукцессий заключаются прежде всего в том, что каждой из них, как и каждой стадии, при­сущ тот набор видов, которые, во-первых, характерны для данного региона, а во-вторых, наиболее приспособлены к той или иной ста­дии развития сукцессионного ряда. Различными будут и заверша­ющие (климаксные) сообщества (экосистемы).

Американский эколог Клементс, наиболее полно разработавший учение о сукцессиях, считает, что в любом обширном географи­ческом районе, который по масштабам можно примерно прирав­нять к природной зоне (лесная, степная, пустынная и т. п.), каждый ряд завершается одной и той же климаксной экосистемой (моно­климаксом). Такой климакс был назван климатическим. Это, од­нако, не значит, что для любого участка географической зоны (мо­ноклимакса) характерен один и тот же набор видов. Видовой со­став климаксных экосистем может существенно различаться. Об­щим является лишь то, что эти экосистемы объединяет сходство видов-эдификаторов, то есть тех, которые в наибольшей мере создают среду обитания. Например, для степных экосистем эдификаторами являются плотнокустовые злаки (ковыль и типчак). Для тропических лесов в качестве эдификаторов выступает большое количество древесных видов, создающих сильное затенение для других видов своим пологом.

Для лесной зоны северных и срединных регионов Евразии основ­ными эдификаторами выступают ель или пихта. Из набора всех дре­весных видов они в наибольшей степени изменяют условия место-произрастания: сильно затеняют подпологовое пространство, созда­ют кислую среду почв и обусловливают процессы их оподзоливания (растворение и вымывание из приповерхностного слоя практически всех минералов, кроме кварца). С этими эдификаторами уживаются только те древесные виды, которые не отстают от них в росте и способны первыми захватить пространство. При сочетании таких условий возможно формирование климаксных смешанных елово-лиственных (пихтово-лиственных), чаще всего с березой и осиной, ле­сов. Последнее наиболее характерно для зоны смешанных лесов. Для таежной (более северной) зоны более типичны климаксные леса с явным преобладанием только эдификаторов (ель, пихта).

Однако прежде чем сформируется климаксное сообщество (экоси­стема), ему предшествует, как отмечалось выше, ряд промежуточ­ных стадий или серий. Так, в лесной зоне (рис.5) на исходно безжиз­ненном субстрате здесь сначала появляются организмы-пионеры, на­пример, корковые водоросли, накипные лишайники и некоторые мало­требовательные к плодородию субстрата семенные растения. За ними следует стадия растительности, представленная в основном травами, а затем кустарниками и деревьями-пионерами (чаще всего березой, осиной, ивой). Последние характеризуются быстрым ростом, но, отличаясь высоким светолюбием, быстро изреживаются (к 40-50-лет­нему возрасту). В результате этого под их пологом создаются усло­вия для поселения теневыносливой ели, которая постепенно догоняет в росте стареющие лиственные виды деревьев и выходит в первый ярус. На данной стадии и образуется климаксное смешанное елово-лиственное сообщество или чисто еловый лес со свойственным им набором других видов растений и животных.

Рис. 5

Биогеоценотическая сукцессия на примере смен фитоценозов в лесной зоне

Наряду с теорией моноклимакса существует точка зрения, в соот­ветствии с которой в одном и том же географическом районе может формироваться несколько завершающих (климаксных) экосистем (по­ликлимакс). Например, в лесной зоне наряду с еловыми и елово-лиственными лесами в качестве климаксных рассматривают также луговые экосистемы, сосновые леса. Однако сторонники моноклимакса считают, что луга в лесной зоне могут длительно существовать толь­ко в результате их использования (скашивания, выпаса). При прекра­щении таких воздействий на смену им неизбежно придут лесные со­общества. Что касается сосновых лесов, то длительное существова­ние их связывается с тем, что они занимают обычно крайне бедные (например, песчаные, щебнистые, сильно заболоченные) местообитания, где ель (более сильный эдификатор) не может внедряться и суще­ствовать вследствие более значительной требовательности к почвен­ному плодородию. Но с течением времени по мере накопления в по­чве органических веществ и необходимых для жизни минеральных элементов и эти «сосновые местообитания», с точки зрения сторонни­ков моноклимакса, будут заняты еловыми лесами, как обладающими более сильной эдификаторной способностью.

Причины сукцессий. Сукцессионные смены обычно связыва­ют с тем, что существующая экосистема (сообщество) создает неблагоприятные условия для наполняющих ее организмов (почво­утомление, неполный круговорот веществ, самоотравление продук­тами выделений или разложения и т. п.). Такие явления реальны, но не объясняют всех случаев смен экосистем. Например, в север­ных лесах внедрение ели под полог лиственных древесных сооб­ществ связано прежде всего с тем, что она использует биологи­ческие свойства этих сообществ по слабому притенению почвы. Сами же почвенные условия остаются не только благоприятными для лиственных древостоев, но и постепенно улучшаются для них (идет накопление питательных веществ, уменьшается кислотность почв и т.п.). Следовательно, здесь нет оснований говорить о само­отравлении или других подобных причинах смен.

Не подтверждается безоговорочно и точка зрения о том, что появление ели под пологом лиственных древостоев связано с тем, что в молодом возрасте она требует затенения. Известно, напри­мер, что ель и в молодом возрасте прекрасно растет при полном освещении (значительно лучше, чем под пологом других древес­ных видов). Об этом, в частности, свидетельствуют многочислен­ные примеры создания культурных фитоценозов ели (посадкой мо­лодых растений или посевом семян) на открытых площадях.

Наряду с природными факторами, причинами динамики экосис­тем все чаще выступает человек. К настоящему времени им раз­рушено большинство коренных (климаксных) экосистем. Например, степи почти полностью распаханы (сохранились только на запо­ведных участках). Преобладающие площади лесов представлены переходными (временными) экосистемами из лиственных древес­ных пород (береза, осина, реже ива, ольха и др.). Эти леса обычно называют производными или вторичными. Они, как отмеча­лось выше, являются промежуточными стадиями сукцессий.

К сменам экосистем ведут также такие виды деятельности че­ловека, как осушение болот, чрезмерные нагрузки на леса. Напри­мер, в результате отдыха населения (рекреации), химических заг­рязнений среды, усиленного выпаса скота, пожаров и т. п.

Антропогенные воздействия часто ведут к упрощению экосис­тем. Такие явления обычно называют дигрессиями (лат. дигрессион - отклонение). Различают, например, пастбищные, рекреаци­онные и другие дигрессии. Смены такого типа обычно завершают­ся не климаксными экосистемами, для которых характерно услож­нение структуры, а стадиями катоценоза (греч. ката - вниз, про­тив; кайнос - общий), которые нередко заканчиваются полным рас­падом экосистем.

Климаксные экосистемы обычно чувствительны к различным вмешательствам в их жизнь. К подобным воздействиям, кроме хвойных лесов, чувствительны и другие коренные сообщества, на­пример, дубовые леса. Это одна из причин катастрофической гибе­ли дубрав в современный период и замены их, как и хвойных лесов, менее ценными, но более устойчивыми временными экосистема­ми из березы, осины, кустарников или трав. Последнее особенно типично при разрушении степных и лесостепных дубрав.

Кроме песчаных пространств, первичные сукцессии могут начи­наться на горных породах, извлеченных из недр, продуктах извер­жения вулканов (застывшая лава, отложения пепла) и т. п.

Вторичные н другие сукцессии. Вторичные сукцессии отличаются от первичных тем, что они начинаются обычно не с нулевых значений, а возникают на месте нару­шенных или разрушенных экосистем. Например, после вы­рубок лесов, лесных пожаров, при зарастании площадей, нахо­дившихся под сельскохозяйственными угодьями. Основное отличие этих сукцессий заключается в том, что они протекают несравненно быстрее первичных, так как начинаются с проме­жуточных стадий (трав, кустарников или древесных растений-пионеров) и на фоне более богатых почв. Конечно, вторичная сукцессия возможна только в тех случаях, если человек не бу­дет оказывать сильное и постоянное влияние на развивающие­ся экосистемы. В последнем случае, как отмечалось выше, процесс пойдет по схеме дигрессий и завершится стадией ка­тоценоза и опустынивания территорий.

Различают также автотрофные и гетеротрофные сукцес­сии. Рассмотренные выше примеры сукцессий относятся к автотрофным, поскольку все они протекают в экосистемах, где цент­ральным звеном является растительный покров. С его развитием связаны смены гетеротрофных компонентов. Такие сукцессии по­тенциально бессмертны, поскольку все время пополняются энер­гией и веществом, образующимися или фиксирующимися в орга­низмах в процессе фотосинтеза либо хемосинтеза. Завершаются они, как отмечалось, климаксной стадией развития экосистем.

К гетеротрофным относятся те сукцессии, которые протека­ют в субстратах, где отсутствуют живые растения (продуценты), а участвуют лишь животные (гетеротрофы). Этот вид сукцессий имеет место только до тех пор, пока присутствует запас готового органического вещества, в котором сменяются различные виды организмов-разрушителей. По мере разрушения органического ве­щества и высвобождения из него энергии сукцессионный ряд за­канчивается, система распадается. Таким образом, эта сукцес­сия по природе своей деструктивна. Примерами гетеротрофных являются сукцессии, имеющие место, например, при разложении мертвого дерева или животного. Так, при разложении мертвого дерева можно выделить несколько стадий смен гетеротрофов. Первыми на мертвом, чаще ослабленном дереве поселяются насекомые-короеды. Далее их сменяют насекомые, питаю­щиеся древесиной (ксилофаги). К ним относятся личинки уса­чей, златок и др. Одновременно идут смены грибного населения. Они имеют примерно следующую последовательность: грибы-пионеры (обычно окрашивают древесину в разные цвета), грибы-деструкторы, способствующие появлению мягкой гнили, и грибы-гумификаторы, превращающие часть гнилой древеси­ны в гумус. На всех стадиях сукцессий присутствуют также бак­терии. В конечном счете органическое вещество в основной мас­се разлагается до конечных продуктов: минеральных веществ и углекислого газа. Гетеротрофные сукцессии широко осуществля­ются при разложении детрита (в лесах он представлен лесной под­стилкой). Они протекают также в экскрементах животных, в заг­рязненных водах, в частности, интенсивно идут при биологичес­кой очистке вод с использованием активного ила, насыщенного большим количеством организмов.








Дата добавления: 2016-01-03; просмотров: 679;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.023 сек.