3 страница. 11. Что является центральным звеном биосферы?

11. Что является центральным звеном биосферы?

IV. ЭКОСИСТЕМНЫЙ УРОВЕНЬ ЖИЗНИ

Экосистемы, как отмечалось в разделе («Основные понятия...»), являются основными звеньями (блоками) биосферы. Там же дает­ся определение термина. На уровне экосистем, особенно элемен­тарном (неделимом), представляется возможным рассмотреть более детально, глубоко и последовательно, чем это сделано на примере биосферы, основные свойства и закономерности их функ­ционирования, важные как в теоретическом плане, так и для реше­ния прикладных задач.

Экосистемы в конечном счете являются основными объектами (ячейками) научно обоснованного природопользования, особенно возобновимыми ресурсами. Их уровень используется для обосно­вания допустимых объемов изъятия продукции (при сохранении устойчивости), увеличения ее выхода (повышения продуктивнос­ти) и для решения других вопросов. В конечномсчете через сохра­нение отдельных элементарных экосистем решается важнейшая проблема современности - предотвращения или нейтрализа­ции неблагоприятных явлений глобального кризиса, сохра­нения биосферы в целом.

IV. 1. Организация (структура) экосистем

Для того чтобы экосистемы функционировали (существовали) нео­граниченно долго и как единое целое, они должны обладать свойствами связывания и высвобождения энергии, а также круговоротом веществ. Экосистема, кроме этого, должна иметь механизмы, позволяющие про­тивостоять внешним воздействиям (возмущениям, помехам), гасить их. Для раскрытия этих механизмов познакомимся с различными видами структур и другими характеристиками (свойствами) экосистем.

Блоковая модель экосистемы. Любая экосистема состоит из двух блоков. Один из них представлен комплексом взаимосвязанных живых организмов - биоценозом, а второй - факторами среды - биотопом или экотопом. В таком случае можно записать: экоси­стема = биоценоз + биотоп (экотоп). В. Н. Сукачев блоковую модель в ранге биогеоценоза в виде схемы изобразил на рис. 2.

Этот рисунок позволяет наглядно представить, чем отличаются понятия «экосистема» и «биогеоценоз», на что мы обращали внимание в разделе «Основные понятия...». Биогеоценоз, по В. Н. Су­качеву, включает все названные блоки и звенья. Это понятие обыч­но используют применительно к сухопутным системам. В биогеоценозах обязательно наличие в качестве основного звена расти­тельного сообщества (фитоценоза). Примеры биогеоценозов - однородные участки леса, луга, степи, болота и т. п.

Экосистемы могут и не иметь растительное звено. Таким при­мером являются системы, формирующиеся на базе разлагающих­ся органических остатков, гниющих в лесу деревьев, трупов жи­вотных и т. п. В них достаточно присутствие зооценоза и микробоценоза или только микробоценоза, способных осуществлять круго­ворот веществ.

Таким образом, каждый биогеоценоз может быть назван экосистемой, но не каждая экосистема относится к рангу биогеоценоза.

Чтобы снять терминологические неясности, соавтор В. Н. Су­качева по формированию науки биогеоценологии - профессор В. Н. Дылис - образно определил биогеоценоз как экосистему, но только в рамках фитоценоза.

Биогеоценозы и экосистемы могут различаться и по временно­му фактору (продолжительности существования). Любой биогео­ценоз потенциально бессмертен, поскольку все время пополняется энергией за счет деятельности растительных фото- или хемосинтезирующих организмов. В то же время экосистемы без раститель­ного звена заканчивают свое существование одновременно с выс­вобождением в процессе разложения субстрата всей содержащей­ся в нем энергии. Надо, однако, иметь в виду, что в настоящее вре­мя термины «экосистема» и «биогеоценоз» нередко рассматрива­ются как синонимы.

Видовая структура экосистем. Под видовой структурой по­нимается количество видов, образующих экосистему, и соотноше­ние их численностей. Точных данных о количестве видов в экосис­темах нет. Это связано с тем, что трудно учесть видовое разнооб­разие всех мелких организмов (особенно микроорганизмов). Оно исчисляется сотнями и десятками сотен. Видовое разнообразие обычно тем значительнее, чем богаче условия (биотоп) экосисте­мы. В этом отношении самыми богатыми по видовому разнообра­зию являются, например, экосистемы дождевых тропических ле­сов. Только древесные виды исчисляются в них сотнями.

Рис.2

Схема биогеоценоза (экосистемы), по В.Н.Сукачеву

Богатство видов зависит также от возраста экосистем. Моло­дые экосистемы, возникающие, например, на таком изначально без­жизненном субстрате, как отвалы пород, извлекаемые из глубин­ных слоев земной коры при добыче полезных ископаемых, крайне бедны видами. В дальнейшем по мере развития экосистем их ви­довое богатство увеличивается. Но в хорошо сформировавшихся экосистемах оно может несколько уменьшаться. К тому времени обычно выделяется один или 2-3 вида, которые явно преобладают по численности особей. Например, в еловом лесу - ель, в смешанном - ель, береза и осина, в степи - ковыль и типчак. Эти виды занимают большую часть пространства, оставляя меньше места для других видов.

Виды, явно преобладающие по численности особей, носят на­звание доминантных (лат. доминантис - господствующий). На­ряду с доминантами в экосистемах выделяются виды-эдификаторы (лат. эдификатор - строитель). К ним относят те виды, ко­торые являются основными образователями среды. Обычно вид-доминант одновременно является и эдификатором. Например, ель в еловом лесу наряду с доминантностью обладает высокими эдификаторными свойствами. Они выражаются в ее способности сильно затенять почву, создавать кислую среду своими корневы­ми выделениями и при разложении мертвого органического ве­щества, образовывать специфические для кислой среды подзоли­стые почвы. Вследствие высоких эдификаторных свойств ели под ее пологом могут жить только виды растений, которые способны мириться со скудным освещением (теневыносливые и тенелюби­вые). В то же время под пологом елового леса доминантным ви­дом может быть, например, черника, но она не является суще­ственным эдификатором.

Видовое разнообразие - очень важное свойство экосистем. С ним, как отмечалось выше, связана устойчивость систем к небла­гоприятным факторам среды. Разнообразие обеспечивает как бы подстраховку, дублирование устойчивости. Вид, который присут­ствует в числе единичных экземпляров, при неблагоприятных ус­ловиях для широко представленного вида, в том числе и доминант­ного, может резко увеличить свою численность и таким образом заполнить освободившееся пространство (экологическую нишу), со­хранив экосистему как единое целое.

Видовую структуру обычно используют для оценки условий местопроизрастания по растениям-индикаторам. Так, для лесной зоны кислица указывает на условия увлажнения, близкие к оптималь­ным, и значительное богатство почв питательными минеральными веществами; черника - на несколько избыточное увлажнение и не­который дефицит элементов минерального питания; брусника - на дефицит увлажнения и почвенного плодородия; мхи (кукушкин лен и особенно сфагнум) - на чрезмерно избыточное увлажнение, де­фицит минеральных веществ, недостаток кислорода для дыхания корней и наличие процессов торфообразования. Наряду с индика­торами меняется состав и других видов, произрастающих под по­логом эдификаторов.

Названия экосистем (биогеоценозов). По растениям-эдификаторам или доминантам и растениям-индикаторам обычно называют биогеоценозы (экосистемы). Лесоводы их определя­ют как типы леса (например, ельники-кисличники, ельники-чер­ничники, ельнико-сфагновые и др.). По такому же принципу клас­сифицируются и называются другие экосистемы. Например, для степей выделяются типчаково-ковыльные, злаково-разнотравные и другие системы.

Трофическая (функциональная) структура экосистем. Цепи питания. Любая экосистема включает несколько трофических (пищевых) уровней или звеньев. Первый уровень представ­лен растениями. Их называют автотрофами (греч. аутос - сам; трофо - пища) или продуцентами (лат. продуцена - создающий). Второй и последующие уровни представлены животными. Их на­зывают гетеротрофами (греч. геторос - другой) или консумен-тами. Последний уровень в основном представлен микроорганиз­мами и грибами, питающимися мертвым веществом. Их называ­ют редуцентами (лат. редуцере - возвращать). Они разлагают органическое вещество до исходных минеральных элементов.

Взаимосвязанный ряд трофических уровней представляет цепь питания, или трофическую цепь (рис. 3). Главное свойство цепи питания - осуществление биологического круговорота веществ и высвобождение запасенной в органическом веществе энергии. Важ­но подчеркнуть, что цепь питания не всегда может быть полной. В ней могут отсутствовать растения (продуценты). Такая цепь пита­ния характерна, как отмечалось выше, для сообществ, формирую­щихся на базе разложения животных или растительных остатков, например, накапливающихся в лесах на почве (лесная подстилка).

В цепи питания очень часто отсутствуют или представлены не­большим количеством животные (гетеротрофы). Например, в ле­сах отмирающие растения или их части (ветви, листья и др.) сразу включаются в звено редуцентов, которые завершают круговорот.

Исходя из положения: разнообразие - синоним устойчивости, мож­но заключить, что экосистемы с более длинными цепями питания характеризуются повышенной надежностью и более интенсивным круговоротом веществ.

IV.2. Связи организмов в экосистемах

Ни один организм в природе не существует вне связей со средой и другими организмами. Эти связи - основное условие функционирования экосистем. Через них, как было показано выше, осуществля­ется образование цепей питания, регулирование численности орга­низмов и их популяций, реализация механизмов устойчивости сис­тем и другие явления. В процессе взаимосвязей происходит погло­щение и рассеивание энергии и в конечном счете осуществляются средообразующие, средоохранные и средостабилизирующие функ­ции систем.

Подобные экосистемные связи обусловлены всем ходом эволю­ционного процесса. По этой причине и любое их нарушение не ос­тается бесследным, требует длительного времени для восстанов­ления. В связи с этим экологически обусловленное поведение че­ловека в природе невозможно без знакомства с этими связями и последствиями их нарушения. Целесообразно выделять взаимосвя­зи и взаимоотношения организмов в природе (экосистемах) как раз­личные понятия.

Взаимосвязи организмов. Взаимосвязи обычно классифици­руются по «интересам», на базе которых организмы строят свои отношения.

Самый распространенный тип связей базируется на интересах питания. Такие связи носят название пищевых или трофичес­ких (греч. трофо - питание). В данный тип связей выделяется пи­тание одного организма другим или продуктами его жизнедеятель­ности (например, экскрементами), питание сходной пищей (напри­мер, мертвым органическим веществом). Этим типом связей объединяются растения и насекомые, опыляющие их цветки. На базе трофических связей возникают цепи питания.

Связи, основанные на использовании местообитаний, носят на­звание топических (греч. топос - место). Например, топические связи возникают между животными и растениями, которые предо­ставляют им убежище или местообитание (насекомые, прячущие­ся в расщелинах коры деревьев или живущие в гнездах птиц, расте­ния, поселяющиеся на стволах деревьев (но не паразиты). Не толь­ко трофическими, но и топическими отношениями связаны парази­ты с организмами, на которых они паразитируют.

Рис.3

Трофическая (функциональная) структура экосистемы (цепь пи­тания) и круговорот вещества в ней

Следующий тип связей носит название форических (лат. форас -наружу, вон). Они возникают в том случае, если одни организмы участвуют в распространении других или их зачатков (семян, пло­дов, спор). Животными это распространение может осуществлять­ся как на наружных покровах, так и в пищеварительном тракте.

Выделяют также тип связей, которые носят название фабрических (лат. фабрикатио - изготовление). Для них характерно ис­пользование одними организмами других или продуктов их жизне­деятельности, частей (например, растений, перьевого покрова, шер­сти, пуха) для постройки гнезд, убежищ и т. п.

Взаимоотношения организмов. Данная классификация стро­ится по принципу влияния, которое оказывают одни организмы на другие в процессе взаимных контактов. Эти взаимоотношения мож­но обозначить математическими значками «+», «–», «0» (положи­тельно, отрицательно, нейтрально).

Если взаимоотношения обоим партнерам выгодны, они обознача­ются значками (+,+) и носят название симбиоза или мутуализма. Степень этих связей различна. В ряде случаев организмы настолько тесно связаны, что функционируют как единый организм. Например, лишайники, представляющие симбиоз гриба и водоросли. Водоросль поставляет грибу продукты фотосинтеза, а гриб для водоросли явля­ется поставщиком минеральных веществ и, кроме того, субстратом, на котором она живет. В то же время сожительство грибов с корня­ми растений (микориза) носит хотя и взаимовыгодные, но не в такой степени тесные взаимоотношения. Тип взаимовыгодных отношений широко распространен. Сюда относятся и микроорганизмы, населя­ющие пищеварительный тракт животных, способствуя усвоению пищи; и, в ряде случаев, травоядные животные. Установлено, что исключение поедания трав животными может иметь следствием оскудение растительных сообществ, снижение ими продуктивности и устойчивости. Даже умеренное объедание листьев древесных ра­стений насекомыми или их гусеницами может быть положительным не только для животных, но и для растений.

Взаимоотношения, которые положительны для одного вида и отрицательны для другого (+,-), характеризуются как хищниче­ство и паразитизм. Хищник и паразит обычно приспосабливают­ся к использованию других организмов (их жертв и хозяев), а пос­ледние, в свою очередь, имеют адаптации, которые сохраняют им жизнь. Эти типы взаимоотношений обычно играют большую роль в регулировании численности организмов. Интенсивное размноже­ние хищников и паразитов обычно имеет следствием уменьшение численности их жертв или хозяев.

В свою очередь, уменьшение численности жертв и хозяев под­рывает кормовую базу хищников и паразитов, что ведет к сокра­щению их численности и т. д. В конечном счете имеет место обычно пульсирующая численность организмов, вступающих в такие типы взаимоотношений.

Хотя взаимоотношения типа хищничества и паразитизма сходны по результатам влияния на численность особей, они резко различа­ются по образу жизни и адаптациям. Во взаимоотношениях хищ­ник-жертва оба организма постоянно совершенствуются: первый в плане успешности охоты, второй - в отношении самосохранения. И в том и в другом случае требуется быстрая реакция, высокая скорость передвижения, хорошее зрение, обоняние и т. п.

Во втором типе взаимоотношений у паразита адаптации идут по пути специализации структур на использование хозяина как источ­ника пищи и «благоустроенного» местообитания. Результатом это­го является упрощение многих органов (пищеварительный тракт, накожные покровы, органы передвижения, чувств и др.). Вместе с тем, поскольку жизнь паразита очень тесно связана с хозяином, он адаптирован на выживание во внешней среде после смерти хозяи­на. Достигается это за счет большого количества зачатков (семян, спор, цист и т. п.), обычно долго сохраняющихся в среде.

Адаптации хозяина направлены, как правило, на уменьшение вре­да от паразита. Это проявляется в выработке активного иммуни­тета, заключении внутренних паразитов в различного вида капсулы (галлы, цецидии и т. п.).

В ряде случаев адаптации паразитов и хозяев приводят к их вза­имовыгодным отношениям типа симбиоза. Есть основание пола­гать, что в большинстве случаев симбиоз (мутуализм) вырос из паразитизма.

Взаимоотношения, невыгодные обоим партнерам (-,-), носят на­звание конкуренции. Последняя тем сильнее, чем ближе потреб­ности организмов к фактору или условию, за которые они конкури­руют. В этом отношении наиболее близки интересы организмов од­ного вида, и, следовательно, внутривидовая конкуренция рассмат­ривается как более острая по сравнению с межвидовой. Однако данное положение противоречит тому факту, что практически все механизмы существования вида направлены на его выживание. Такое противоречие решается тем, что на внутривидовом уровне есть механизмы, которые позволяют снять остроту конкурентной борьбы, в том числе жертвуя частью особей (см. разд.V.2). Кон­куренция и взаимоотношения типа хищник-жертва являются основными в совершенствовании видов, в то время как взаимоотно­шения типа мутуализма (симбиоза) способствуют оптимизации жизненных процессов, более полному освоению среды.

Менее распространенным типом взаимоотношений является комменсализм (франц. комменсал - сотрапезник) - отношения, положительные для одного и безразличные для другого партнера (+,0), его иногда делят на нахлебничество, когда один организм по­едает остатки пищи со «стола» другого (крупного) организма (на­пример, акулы и сопровождающие их мелкие рыбы; львы и гиены) и квартиранство, или синойкийю (греч. синойкос -сожительство), когда одни организмы используют другие как «квартиру», убежи­ще. Например, молодь некоторых морских рыб прячется под зон­тик из щупалец медуз, или некоторые насекомые живут в норах животных, гнездах птиц, используя их только для укрытия.

Не часто встречается также аменсализм (лат. аменс - безрас­судный, безумный) - отрицательный для одного организма и без­различный для другого (-,0). Например, светолюбивое растение, попавшее под полог леса. Отношения, при которых организмы, за­нимая сходные местообитания, практически не оказывают влия­ния друг на друга, носят название нейтрализма (0,0). Например, белки и лоси в лесу. Сохранение разнообразия связей - важнейшее условие устойчивости экосистем.

IV.3. Экологическая ниша

Для понимания различного вида существующих связей в экосис­темах и обусловленности механизмов их функционирования важно познакомиться с одним из основополагающих понятий эколо­гии - экологической нишей.

Каждый вид или его части (популяции, группировки различного ран­га) занимают определенное место в окружающей их среде. Напри­мер, определенньш вид животного не может произвольно менять пи­щевой рацион или время питания, место размножения, убежища и т. п. Для растений подобная обусловленность условий выражается, напри­мер, через светолюбие или тенелюбие, место в вертикальном расчле­нении сообщества (приуроченность к определенному ярусу), время наиболее активной вегетации. Например, под пологом леса одни рас­тения успевают закончить основной жизненный цикл, завершающийся созреванием семян, до распускания листьев древесного полога (ве­сенние эфемеры). В более позднее время их место занимают другие, более теневыносливые растения. Особая группа растений способна на быстрый захват свободного пространства (растения-пионеры), но отличается низкой конкурентной способностью и поэтому быстро ус­тупает свое место другим (более конкурентоспособным) видам.

Приведенные примеры иллюстрируют экологическую нишу или отдельные ее элементы. Под экологической нишей понимают обычно место организма в природе и весь образ его жизне­деятельности, или, как говорят, жизненный статус, вклю­чающий отношение к факторам среды,видам пищи, време­ни и способам питания, местам размножения, укрытий и т. п. Это понятие значительно объемнее и содержательнее понятия «местообитание». Американский эколог Одум образно назвал местообитание «адресом» организма (вида), а экологическую нишу - его «профессией». На одном местообитании живет, как правило, боль­шое количество организмов разных видов. Например, смешанный лес - это местообитание для сотен видов растений и животных, но у каждого из них своя и только одна «профессия» - экологическая ниша. Так, сходное местообитание, как отмечалось выше, в лесу занимают лось и белка. Но ниши их совершенно разные: белка живет в основном в кронах деревьев, питается семенами и плодами, там же размножается и т. п. Весь жизненный цикл лося связан с подпологовым пространством: питание зелеными растениями или их ча­стями, размножение и укрытие в зарослях и т. п.

Если организмы занимают разные экологические ниши, они не вступают обычно в конкурентные отношения, сферы их деятельно­сти и влияния разделены. В таком случае отношения рассматрива­ются как нейтральные.

Вместе с тем в каждой экосистеме имеются виды, которые пре­тендуют на одну и ту же нишу или ее элементы (пищу, укрытия и пр.). В таком случае неизбежна конкуренция, борьба за обладание нишей. Эволюционно взаимоотношения сложились так, что виды со сходными требованиями к среде не могут длительно существовать совместно. Эта закономерность не без исключений, но она настоль­ко объективна, что сформулирована в виде положения, которое полу­чило название «правило конкурентного исключения». Автор этого правила эколог Г. Ф. Гаузе. Звучит оно так: если два вида со сходными требованиями к среде (питанию, поведению, мес­там размножения и т. п.) вступают в конкурентные отношения, то один из них должен погибнуть либо изменить свой образ жизни и занять новую экологическую нишу. Иногда, на­пример, чтобы снять острые конкурентные отношения, одному орга­низму (животному) достаточно изменить время питания, не меняя самого вида пищи (если конкуренция возникает на почке пищевых отношений), или найти новое местообитание (если конкуренция име­ет место на почве данного фактора) и т. п.

Из других свойств экологических ниш отметим, что организм (вид) может их менять на протяжении своего жизненного цикла. Наиболее яркий пример в этом отношении - насекомые. Так, экологическая ниша личинок майского жука связана с почвой, питанием корневыми системами растений. В то же время экологическая ниша жуков свя­зана с наземной средой, питанием зелеными частями растений.

Сообщества (биоценозы, экосистемы) формируются по принципу заполнения экологических ниш. В природном сформировавшемся сообществе обычно все ниши заняты. Именно в такие сообщества, например в долгосуществующие (коренные) леса, вероятность вне­дрения новых видов очень мала. В то же время следует иметь в виду, что занятость экологических ниш в определенной мере понятие относительное. Все ниши обычно освоены теми организмами, кото­рые характерны для данного региона. Но если организм приходит извне (например, заносятся семена или другие зачатки) случайно или преднамеренно, например в результате внедрения человеком новых видов (интродукция, акклиматизация), то он может найти для себя свободную нишу в связи с тем, что на нее не было претендентов из набора существующих видов. В таком случае обычно неизбежно быстрое увеличение численности (вспышка) вида-пришельца, по­скольку он находит крайне благоприятные условия (свободную нишу) и, в частности, не имеет врагов (хищников, паразитов или других орга­низмов, которые им питаются). Такие явления не единичны. Напри­мер, размножение кроликов, завезенных в Австралию; перемещение ондатры из Азии в европейскую часть; интенсивное продвижение колорадского жука в новые районы.

С экологическими нишами в значительной мере связаны жиз­ненные формы организмов. К последним относят группы ви­дов, часто систематически далеко отстоящие, но вырабо­тавшие одинаковые морфологические адаптации в резуль­тате существования в сходных условиях. Например, сходством жизненных форм характеризуются дельфины (млекопитающие) и интенсивно передвигающиеся в водной среде хищные рыбы. В ус­ловиях степей сходными жизненными формами представлены тушканчики и кенгуру (прыгуны). В растительном мире отдельными жизненными формами представлены многочисленные виды дере­вьев, занимающие в качестве нити верхний ярус, кустарники, су­ществующие под пологом леса, и травы - в напочвенном покрове.

IV.4. Энергетика экосистем

Живые организмы, входящие в экосистемы, для своего суще­ствования должны постоянно пополнять и расходовать энергию. Растения, как известно, способны запасать энергию в химических связях в процессе фотосинтеза или хемосинтеза. При фотосинтезе связывается только энергия с определенными длинами волн -380-710 нм. Эту энергию называют фотосинтетически активной радиацией (ФАР). Она по длинам волн близка к видимой части спек­тра. На эту радиацию обычно приходится около 40% общей сол­нечной радиации, достигающей земной поверхности. Остальная часть спектра относится либо к более короткой (ультрафиолето­вой), либо к более длинной (инфракрасной) радиации. С последней обычно связан тепловой эффект.

Растения в процессе фотосинтеза связывают лишь небольшую часть солнечной радиации. Даже по отношению к фотосинтетичес­ки активной - это в среднем для земного шара менее 1%. Только наиболее продуктивные экосистемы, такие как плантации сахарно­го тростника, тропические леса, посевы кукурузы, в оптимальных условиях могут связывать до 3-5% ФАР. В опытах с кондициони­рованными условиями по всем факторам среды за короткие перио­ды времени удавалось достичь эффективности фотосинтеза по ус­воению солнечной энергии порядка 8-10% ФАР.

Растения являются первичными поставщиками энергии для всех других организмов в цепях питания. Существуют определенные закономерности перехода энергии с одного трофического уровня на другой вместе с потребляемой пищей. Основная часть энергии, усвоенной консументом с пищей, расходуется на его жизнеобеспе­чение (движение, поддержание температуры тела и т. п.). Эту часть энергии рассматривают как траты на дыхание, с которым в конеч­ном счете связаны все возможности ее высвобождения из хими­ческих связей органического вещества.

Часть энергии переходит в тело организма-потребителя вместе с увеличивающейся массой (приростом, продукцией). Некоторая доля пищи, а вместе с ней и энергия не усваиваются организмом. Они выводятся в окружающую среду вместе с продуктами жизне­деятельности (экскрементами). В последующем эта энергия выс­вобождается другими организмами, которые потребляют продук­ты выделения.

Баланс пищи и энергии для отдельного животного организма можно, таким образом, представить в виде следующего уравне­ния:

Эп = Эдпрп.в ,

где Эп - энергия потребленной пищи, Эд - энергия дыхания или обеспечения жизнедеятельности организма, включая движение, поддержание температуры тела, сердцебиение и т. п., Эпр - энер­гия прироста (запасенная в теле организма-потребителя), Эп.в - энер­гия продуктов выделения (в основном экскрементов).

Количество энергии, расходуемой организмами на различные цели, неоднозначно. В периоды интенсивной жизнедеятельности взрослого организма в теле его может совершенно не фиксироваться энергия. Наоборот, траты ее в ряде случаев превышают поступле­ние (организм теряет вес). В то же время в периоды интенсивного роста организмов, особенно в периоды размножения (беременнос­ти), в теле фиксируется значительное количество энергии.

Выделение энергии с экскрементами у плотоядных животных (например, хищников) невелико, у травоядных оно более значительно, а гусеницы некоторых насекомых, питающиеся растениями, выде­ляют с экскрементами до 70% энергии. Однако при всем разнооб­разии расходов энергии в среднем максимальны траты на дыха­ние, которые в сумме с неусвоенной пищей составляют около 90% от потребленной. Поэтому переход энергии с одного трофического уровня на другой в среднем принимается близким к 10% от энер­гии, потребленной с пищей. Эта закономерность рассматривается обычно как «правило десяти процентов».

Данное правило надо оценивать как относительное, ориентиро­вочное. Вместе с тем из него следует, что цепь питания имеет ограниченное количество уровней, обычно не более 4—5. Пройдя через них, практически вся энергия оказывается рассеянной.

Закономерности потока и рассеивания энергии имеют важные в практическом отношении следствия. Во-первых, с энергетической точки зрения крайне нецелесообразно потребление животной про­дукции, особенно с высоких уровней цепей питания. Образование этой продукции связано с большими потерями (рассеиванием) энер­гии. Особенно велики потери энергии при переходе с первого тро­фического уровня на второй, от растений к травоядным животным.

Часто в экологической литературе рассматривается в качестве примера цепь питания: люцерна-телята-мальчик. Показано, что если бы мальчик весом 48 кг питался только телятиной, то за год ему потребовалось бы для обеспечения жизнедеятельности 4,5 те­ленка, для питания которых, в свою очередь, необходим урожай люцерны с площади 4 га весом 8211 кг. Такова энергетическая цена животной пищи.

Во-вторых, чтобы сократить вероятность дефицита продуктов питания для интенсивно возрастающей численности населения (по закономерности, близкой к экспоненте), надо, чтобы в рационе лю­дей больший удельный вес занимала растительная пища. Энерге­тически идеально - вегетарианство.

В-третьих, для увеличения КПД использования пищи при полу­чении животноводческой продукции в условиях культурного хозяй­ства очень важно уменьшить основную статью нерационального расходования энергии - ее траты на дыхание. Это возможно за счет поддержания оптимального температурного режима в животновод­ческих помещениях, ограничения подвижности животных и, есте­ственно, сбалансированности кормового рациона по различным эле­ментам питания, а также применения различных биотехнических приемов (умеренные добавки стимуляторов роста, веществ, спо­собствующих улучшению аппетита и т. п.).








Дата добавления: 2016-01-03; просмотров: 1708;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.021 сек.