Особенности режима бурения турбинным способом

Основные положения.Турбобур — это забойный гидравлический двигатель, предназначенный для бурения скважин в различных ге­ологических условиях. В рабочих колесах турбобура гидравлическая энергия бурового раствора, движущегося под давлением, превра­щается в механическую энергию вращающегося вала, связанного с долотом.

Основная часть турбобура — турбина, состоящая из большого числа (более сотни) совершенно одинаковых ступеней. Каждая ступень турбины, в свою очередь, состоит из двух частей: враща­ющейся, соединенной с валом турбобура, называемой ротором, и неподвижной, закрепленной в корпусе турбобура, называемой статором (рис. 7.3). Статор 1 представляет собой гладкое стальное кольцо, на внутренней поверхности которого имеются изогнутые лопатки 3. Концы лопаток соединяются внутренним ободом 4. Ротор состоит из кольца 6 и лопаток 2, подобных лопаткам статора, но обращенных выпуклостью в другую сторону. Наружные концы ло­паток ротора соединены ободом 5. Между статором и ротором имеет­ся зазор, обеспечивающий свободное вращение ротора в статоре.

Теория малогабаритных турбин для бурения нефтяных и га­зовых скважин создана советским инженером П. П. Шумиловым. Основные условия построения турбин турбобуров следующие. Для получения необходимой мощности и приемлемого для бу­рения числа оборотов турбина должна быть многоступенчатой. Все ступени турбины должны быть совершенно одинаковыми


Сила, действующая на лопатку статора

Сила, действующая на лопатку ротора

Рис. 7.3. Действие турбины:

/ — статор; 2 — лопатки ротора; 3 — лопатки статора; 4 — обод статора; 5 — обод ротора; 6 — кольцо ротора

и обеспечивать пропорционально числу ступеней увеличение мощ­ности и скорости вращения инструмента.

Для получения наименьшего износа турбинных лопаток рото­ры турбины выполняют с тем же профилем, что и статоры турби­ны, лишь с поворотом лопаток в противоположную сторону.

Перепад давления на турбине должен быть в пределах, допуска­емых насосными установками, применяемыми при бурении глубо­ких скважин, и для избежания толчков давления в системе не должен существенно изменяться при изменении режима работы турбины.

П. П. Шумилов установил следующие основные закономернос­ти, характеризующие влияние количества промывочной жидкости на работоспособность турбины.

1. Скорость вращения турбины пропорциональна количеству прокачиваемой жидкости:

где п19 п2скорости вращения; (},, ()2количество прокачива­емой жидкости; т.е. при увеличении количества прокачиваемой жидкости, например в три раза, число оборотов турбины увели­чивается также в три раза, и наоборот.


2. Перепад давления на турбине пропорционален квадрату ко­
личества прокачиваемой жидкости:

о. ~

где Р\, Р^ — давления на турбине; т.е. при увеличении количества Прокачиваемой жидкости, например в два раза, давление на тур­бине увеличивается в четыре раза, и наоборот.

3. Вращающий момент турбины, как и перепад давления, про­
порционален квадрату количества прокачиваемой жидкости:

где А/ь Л/2, — вращающие моменты турбины.

4. Мощность турбины пропорциональна кубу количества прока­чиваемой жидкости:

где 7УЬ Л/2 — мощности турбины; т.е. при увеличении количества прокачиваемой жидкости, например в два раза, мощность турби­ны увеличивается в восемь раз, и наоборот. При бурении турбобуром энергия, предназначенная для раз­рушения породы, подводится к забою потоком промывочной жид­кости. Генератором гидравлической энергии являются буровые насосы, преобразующие механическую энергию привода в гид­равлическую энергию потока промывочной жидкости. Часть энер­гии потока теряется на преодоление гидравлических сопротивле­ний в нагнетательной линии, бурильных трубах, замках, долоте и затрубном пространстве. Оставшаяся часть энергии использует­ся в турбине турбобура для преобразования в механическую энер­гию, которая при помощи долота затрачивается на бурение.П. П. Шумилов показал, что наибольшую гидравлическую мощ­ность на турбине турбобура при неизменном максимальном давле­нии на выкиде буровых насосов, можно получить при следующем условии:

(7.1)

где Рт — перепад давления в турбобуре; буровых насосов.

— давление на выкиде

Так как в процессе бурения скважины гидравлические со­противления в бурильных трубах, замках и кольцевом простран­стве беспрерывно возрастают, то для обеспечения равенства (7.1) необходимо было бы, по мере углубления скважины, непрерывно снижать подачу насосов и, соответственно, изменять характерис­тику турбобуров таким образом, чтобы перепад давления на тур­бине, несмотря на уменьшение расхода жидкости, протекающей через нее, остался постоянным.

Практически характеристики турбобура можно изменять только ступенчато, применяя на различных участках скважины турбобу­ры различных типов. Производительность буровых насосов регули­руется также только ступенчато путем смены цилиндровых втулок. Основная задача проектирования режима турбинного бурения как раз и заключается в установлении режима работы буровых насо­сов, подборе типов турбобуров и осевой нагрузки на долото для различных участков ствола скважины таким образом, чтобы полу­чить наиболее высокие качественные и количественные показате­ли бурения.

Осевая нагрузка выбирается в зависимости от твердости прохо­димых пород. При бурении в твердых породах бурильщик в целях повышения эффективности работы долота увеличивает нагрузку, а при бурении в мягких породах — уменьшает. В то же время неза­висимо от бурильщика частота вращения долота в первом случае уменьшается, а во втором -- увеличивается, что и требуется для достижения хороших показателей работы долота.

Характеристика турбобуров.Во время бурения турбобуром час­тота вращения долота непрерывно меняется в зависимости от на­грузки на забой и крепости проходимых пород. Таким образом, зависимость между крутящим моментом, приложенным к долоту, и скоростью вращения вала турбобура обратно пропорциональ­ная: чем больше нагрузка на долото, тем меньше скорость враще­ния вала, и наоборот, уменьшение нагрузки ведет к увеличению скорости вращения (рис. 7.4).

Отрезок ОА представляет собой крутящий момент, развиваемый турбобуром при скорости вращения вала, равной нулю, т.е. при тор­можении. Этот момент называется тормозным моментом, и по ве­личине он наибольший. С уменьшением крутящего момента часто­та вращения вала увеличивается, и когда крутящий момент станет равным нулю, т.е. нагрузки не будет, частота вращения вала ста­нет максимальной. Максимальная частота вращения вала называет­ся скоростью вращения на холостом ходу. Она изображена отрезком ОБ, равным 1200 об/мин. При режиме работы турбобура, характеризу­емым тонкой В, частота вращения вала составляет 800 об/мин, а раз­виваемый им крутящий момент 1 Н • м. С изменением скорости вращения вала п меняется не только крутящий момент А/, но и другие показатели работы турбобура: v (КПД) и мощность N.


 

.

Коэффициент полезного действия турбобура изменяется следу­ющим образом. При тормозном режиме, т.е. при частоте враще­ния? равной нулю, КПД турбобура также равен нулю. С увеличе­нием частоты вращения КПД возрастает, затем, достигнув своего максимального значения, с дальнейшим увеличением частоты вра­щения начинает уменьшаться и при режиме холостого хода вновь становится равным нулю. Соответственно изменению величины КПД изменяется и величина мощности турбобура (рис. 7.5). Режим работы турбобура, при котором его КПД достигает своего макси­мального значения, называется оптимальным. Частота вращения вала на оптимальном режиме примерно в два раза меньше скоро­сти вращения вала турбины на холостом ходу, а крутящий момент в два раза меньше тормозного момента.

В отличие от крутящего момента, мощности и КПД, перепад давления Р на турбине с изменением частоты вращения вала поч­ти остается неизменным. При переходе от режима холостого хода к тормозному перепад давления на турбине несколько увеличива­ется (10... 15 %).

Все изложенное выше относится к работе турбобура на одина­ковом количестве прокачиваемой через него рабочей жидкости. Построение для данного типа турбобура (при (? = сош!) зависи­мости N. Р, v, Мот числа оборотов вала п называется его рабочей характеристикой. Рабочие характеристики для каждого типа тур­бобура, при одном и том же количестве прокачиваемой жидко­сти, различны, их строят на основе стендовых испытаний. Рабочая характеристика турбобура позволяет правильно подобрать режим его работы при данной подаче буровых насосов.

О 200 400 600 800 л, об/мин
Рис. 7.5. Зависимость КПД и мощности от частоты вращения вала турбины

Рис. 7.4. Зависимость вращающего момента от частоты вращения вала турбины

Конструкция многоступенчатых турбобуров.Различные условия, в которых работают турбобуры, привели к необходимости со­здания нескольких конструктивных разновидностей турбобуров. Турбобуры выпускаются: односекционные бесшпиндельные, одно-секционные шпиндельные, двухсекционные шпиндельные, трех-секционные шпиндельные (табл. 7.1).

 

Таблица 7.1 Технические характеристики основных турбобуров

Тип турбобура Число турбинных секций, шт. Число ступеней турбины, шт. Расход жидкости (вода), л/с Максимальная мощность на валу турбины, кВт Вращающий момент на валу при максимальной мощности, кН • м Число оборотов вала в минуту при минимальной мощности, об/мин Перепад давления на турбине при максимальной мощности, МПа Масса турбобура, кг 1
Т12МЗЕ-172 40,5 0,64 3,0
Т12МЗБ-195 58,8 0,83 3,5
Т12МЗБ-240 136,1 1,96 4,0
Т12РТ-240 136,1 1,96 4,0
А6Ш 32,4 0,69 4,0 1600**
А7Ш 103,0 1,86 8,2 2600**
А9Ш 132,4 3,0 6,8 3920**
ТС4А- 104,5 14,7 0,15 4,5
ТС4А-127 25,7 0,34 5,0
ЗТСШ1-172 51,5 0,98 6,0
ЗТСШ1-195 55,2 1,28 3,5
ЗТСШ1-195ТЛ 62,5 1,72 3,0
ЗТСША-195ТЛ 114,0 1,91 6,5
ЗТСШ1-240 110,3 2,64 5,5
А6ГТШ 342/90* 31,6 1,20 5,6
А7ГТШ 382/146* 58,8 1,86 7,2
А9ГТШ 340/130* 75,0 3,06 5,8
ТПС-172 6,57
ЗТСШ1М1-195 2,875 5,97
число ступеней турбин, в знаменателе — ступе-

* В числителе указано общее ней гидротормоза.

** Без массы шпинделя.


При этом в турбинных секциях могут быть установлены метал­лические цельнолитые турбины, металлические составные турби­ны с проточной частью, выполненной методом точного литья, составные турбины из металлических ступиц и пластмассовых про­точных частей, резинометаллические радиальные опоры, шаро­вые радиальные опоры.

В шпиндельных секциях могут использоваться резинометалли­ческие или шаровые опоры.

Применяются турбобуры нескольких типов.

1. Турбобуры типа Т12 (Т12МЗЕ-172; Т12МЗБ-195; Т12МЗБ-240; Т12РТ-240) применяют для бурения верхних интервалов скважин шарошечными долотами и комплектования реактивно-турбинных агрегатов для бурения стволов большого диаметра методом реак­тивно-турбинного бурения (рис. 7.6).

Диски ротора 12 совместно со втулкой нижней опоры 20 и дву­мя втулками 13 средней опоры вала, упором 18, дисками 6 и кольца­ми 7 пяты зажимаются на валу 75 роторной гайкой 5. При этом для совпадения промывочных окон на упоре и валу турбобура упор 18 фиксируется шпонкой 19. Для предохранения роторной гайки от самоотвинчивания предусмотрен обжимающий колпак 3, закреп­ляемый контргайкой 2.

Герметизация диаметральных зазоров между внутренней поверх­ностью дисков роторов и поверхностью вала в целях предупрежде-

6 7 8 9 10 11 12 13 1415 \\\ I / I / / / /

Рис. 7.6. Односекционный турбобур:

I — переводник; 2 — контргайка; 3 — колпак; 4, 9, 16 — регулировочные кольца;
5 — роторная гайка; 6 — диск; 7 — кольцо; 8 — подпятник; 10 — втулка;

II — диск статора; 12 — диск ротора; 13 — втулка средней опоры вала;
14 — средняя опора; 75 — вал; 77 — уплотнительное кольцо; 18 — упор;

19 — шпонка; 20 — нижняя опора; 21 — ниппель; 22 — переводник

ния шламования, обеспечивается установкой в верхней и нижней части вала втулок Юс уплотнительными кольцами 77, что значи­тельно облегчает разборку турбобура при его ремонте.

Диски статора 77, средние опоры 14, регулировочное кольцо 9 определяющие положение ротора относительно статора в собран­ном турбобуре, и подпятни­ки 8закрепляются ниппелем 2/ с использованием регулиро­вочных колец 4 и 16. Корпус крепится к колонне буриль­ных труб через переводник 7. На валу турбобура имеется пе­реводник 22, соединяемый с долотом.

Рис. 7.7. Реактивно-тур­бинный агрегат РТБ-11-590: /, 7 — переводники; 2 — кожух; 3 — траверса; 4 - турбобур; 5 — хомут; 6 — груз; 8 — долото

Для бурения верхних ин­тервалов глубоких нефтяных и газовых скважин, имеющих диаметры 394...920 мм и бо­лее, применяют реактивно-турбинные агрегаты, у кото­рых два турбобура размещены параллельно и жестко соеди­нены между собой (для буре­ния скважин диаметром 1730... 2660 мм созданы и применяются в горнорудной промышленности агрегаты, укомплектованные тремя и даже четырьмя турбобурами). Агрегат (рис. 7.7) состоит из следующих деталей: перевод­ника 7 для соединения агре­гатов бурильной колонной; защитного кожуха 2; травер­сы 3 с ниппелями, к которым подвешены турбобуры 4\ гру­зов 6, предназначенных для утяжеления агрегата; верхне­го и нижнего хомутов 5; переводников 7, с помощью которых к каждому турбобуру присоединяется трехшарошеч-

ное долото 8. Вращаясь от вала турбобуров, долота получают дополнительное переносное движение вокруг оси агрега-


та, вращающегося либо только за счет сил реакции забоя, либо за счет сил реакции забоя и принудительного вращения агрегата с поверхности через бурильную колонну.Выбуренная порода выносится циркулирующим потоком бу­рового раствора, подаваемого в бурильную колонну, и реактив­но-турбинным бурением. Для бурения скважин с помощью РТБ используют стандартные буровые установки требуемой грузоподъ­емности.

2. Турбобуры секционные типа ТС (ТС4А-104,5; ТС4А-127; ТС5Е-
172; ТС5Б-195; ТС5Б-240; ЗТС5Е-172; ЗТС5Б-195; ЗТС5Б-240) при­
меняют для бурения глубоких скважин шарошечными долотами.
Турбобуры состоят из двух или трех турбинных секций, соединен­
ных в один турбобур.

Вращающий момент от валов верхних секций к валам после­дующих секций передается через муфты валов (конусно-фрикци­онные и конусно-шлицевые). По корпусу секции соединяются пе­реводниками на замковой резьбе. Нижние секции аналогичны по конструкции односекционным турбобурам типа Т12, за исклю­чением верхней части вала, которая представляет собой конус­ную поверхность, сопрягаемую с полумуфтой, предназначен­ной для соединения с валом второй секции турбобура. Верхние и средние турбинные секции одинаковы по конструкции и отли­чаются от нижних отсутствием осевой опоры и конструкцией вала.

Нижнюю секцию турбобуров можно применять для бурения как самостоятельный турбобур, для чего на корпус для соединения с бурильными трубами следует навинчивать переводники.

3. Турбобуры типа КТД (колонковое турбодолото) предназна­
чены для отбора образцов породы (керна) при бурении скважин.
Выполняются с наружным диаметром 240, 195 и 172 мм (КТДЗ-
240-269/4В; КТД4С-195-214/60; КТД4С-172-190/40). Колонковое
турбодолото КТДЗ-240-269/4В по конструкции аналогично тур­
бобуру типа Т12 и отличается от него тем, что имеет полый вал,
в котором помещается грунтоноска и узел для ее крепления.

Колонковые турбодолота КТД4С-172-190/40 и КТД4С-195-214/60 состоят из двух секции. Валы секции турбодолот полые, имеют в срав­нении с валами турбобуров больший наружный диаметр и соеди­няются между собой полыми конусно-шлицевыми полумуфтами.

Конструкция колонковых турбодолот предусматривает приме­нение съемной грунтоноски, обеспечивающей отбор керна без подъема бурильных труб до полной обработки бурильной головки. Для этого в верхней части грунтоноски имеется бурт для захвата ее ловителем (шлипсом), спускаемым в бурильную колонну при по­мощи специальной лебедки.

4. Турбобуры секционные шпиндельные (ЗТСШ-172; ЗТСШ-195;
ЗТСШ-195Л; ЗТСШ-215; ЗТСШ-240), а также турбобуры шпиндель­
ные унифицированные (ЗТСШ1-172; ЗТСШ1-195; ЗТСША-195ТЛ;



ЗТСШ1-240Ш) состоят из трех турбинных и одной шпиндельной секции. Они позволяют: бурить шарошечными долотами с обыч­ной схемой промывки, гидромониторными и алмазными долота­ми (турбобур ЗТСША-195ТЛ); изменять секционность турбобуров в зависимости от условий бурения; производить смену отработан­ных шпинделей без разборки секций; увеличивать величину вра­щающего момента при снижении числа оборотов за счет примене­ния тихоходных турбин, выполненных методом точного литья (тур­бобур ЗТСШ-195ТЛ).

В каждой турбинной секции размещено около 100 ступеней тур­бины, по четыре радиальные опоры и по три ступени предохрани­тельной осевой пяты, которая применяется для устранения опас­ности соприкосновения роторов и статоров турбины из-за износа шпиндельного подшипника в процессе работы.

Созданием шпиндельного турбобура был решен ряд задач, свя­занных с улучшением энергетических характеристик и эксплу­атационных качеств турбобура, значительно уменьшены утечки жидкости из-под ниппеля при увеличенных перепадах давления на долото, повышена прочность валов.

На полом валу шпинделя 20 (рис. 7.8) установлены две ради­альные резинометаллические опоры 10 со втулками опор 9 (цен­трируемыми в верхней опоре подкладными втулками 8} и 25 сту­пеней непроточной осевой опоры, каждая из которых состоит из диска 75, внутреннего и наружного колец 16, 18 и непроточных резинометаллических подпятников 77. Весь пакет деталей, вклю­чая упорную, дистанционную и промежуточную втулки 27, 13 и 14, закрепляется на валу гайкой 6, колпаком 5, контргайкой 4 и кре­пится в корпусе 19 посредством переводника нижней секции 7 и ниппеля 23 с использованием регулировочных колец 3, 7, 22.

На верхней части вала шпинделя установлена конусно-шлице-вая муфта 2, имеющая промывочные окна для протока рабочей жидкости во внутреннюю полость вала и затем к долоту, присо­единяемому к шпинделю через переводник 24. Для облегчения раз­борки шпинделя в процессе ремонта в верхней и нижней его час­тях установлены втулки 77 с уплотнительными кольцами 72, обес­печивающими герметизацию диаметральных зазоров между валом и закрепленным на нем пакетом деталей.

Установка в шпинделе осевой опоры качения (как жесткой, так и амортизированной -- шпиндель типа ШШО) вместо рези-нометаллической опоры скольжения позволяет турбобуру воспри­нимать более высокие осевые нагрузки и эффективно работать при более низких числах оборотов.

Широко применяются шпиндели типа ШФД с лабиринтными дисковыми уплотнениями. Они предназначены для турбинных сек­ций серийных турбобуров. За счет частичной изоляции картера осе­вой опоры от поступления бурового раствора, содержащего твер-


Рис. 7.8. Шпиндель:

1 — переводник нижней секции; 2 — конусно-шлицевая муфта; 3, 7, 22 — регули­ровочные кольца; 4 — контргайка; 5 — колпак; 6 — гайка; 8, 9, 11, 13, 14, 21 — втулки; 10 — резинометаллические опоры; 12 — ушютнительные кольца; 15 — диск; 16, 18 — кольца; 17 — подпятник; 19 — корпус; 20 — вал шпинделя; 23 — ниппель; 24 — переводник

дые абразивные частицы, значительно увеличен моторесурс шпин­деля. Изоляция обеспечивается оборудованием верхней части вала шпинделя лабиринтным уплотнением и установкой между этим уплотнением и уплотнением картера осевой опоры дренажной втулки, отверстия которой сообщаются с затрубным простран­ством.

В шпинделях типа ШГД осуществлена полная герметизации картера осевой опоры от поступления бурового раствора, при этом картер осевой опоры заполнен смазкой. Надежная гермети­зация картера осевой поры обеспечивается тем, что на гермети­зирующие уплотнения не действует перепад давлений, срабаты­ваемый в насадках долота. Герметизирующие уплотнители уста­новлены сверху и снизу картера осевой опоры. Конструкция шпин­деля допускает произведение дозаправки или полной смены смаз­ки на буровой, для чего верхняя и нижняя части картера имеют заправочные втулки.

5. Турбобуры секционные с наклонной линией давления (А6КЗС; А7Н4С; А9К5Са; А6ГТ; А7ГТ; А9ГТ), а также турбобуры секцион­ные унифицированные с наклонной линией давления (А7Ш; А9Ш; А7ГТШ; АЗГТШ) состоят из двух или трех турбинных и одной Шпиндельной секций. В данных турбобурах используется турбина с наклонной линией давления, а в турбобурах А7ГТШ, А9ГТШ для снижения разгонных оборотов дополнительно устанавливаются решетки гидродинамического торможения.

Применение в турбобурах опор качения и турбин, перепад давления на которых при постоянном расходе жидкости умень­шается от холостого к тормозному режиму, дает возможность работать на низких оборотах, улучшает запуск турбобура на вы-сокоабразивных и утяжеленных глинистых растворах, обеспечи­вает способность турбобура работать на повышенных нагрузках на долото.

Недостатком турбобуров с наклонной линией давления явля­ется возможность резкого увеличения перепада давления на тур­бобуре при снижении нагрузки на долото в процессе бурения. Поэтому применение турбобуров данного типа рекомендуется с ис­пользованием дизельного привода на буровых насосах (учитывая более мягкую его характеристику по сравнению с электроприво­дом). При использовании ступеней гидродинамического торможе­ния можно получить скорость вращения вала турбобура, равную 250...300 об/мин.

Базовые детали турбобуров секционных унифицированных с наклонной линией давления в габаритных размерах унифициро­ваны с деталями турбобуров типа ЗТСШ1. Выпускаются также тур­бобуры шпиндельные с независимой подвеской вала турбинной секции (А6Ш; А6ГТШ; А7ШГ; А7ГТШМ; А9ШГ). Отличительной особенностью этих турбобуров является то, что вал в турбинной секции подвешен на отдельном шарикоподшипнике со специаль­ными фонарями для протока промывочной жидкости.

6. Турбобуры с «плавающими статорами» (ЗТСШ1М1-195; ТПС-172) обладают следующими особенностями: каждый статор такого турбобура имеет свободу перемещения и с помощью шпонки, за­ходящей в специальный паз корпуса, запирается от проворота под действием собственного реактивного момента. Каждый ротор пред­ставляет собой и пяту для соответствующего статора, который не имеет приставочных дистанционных колец. Такое исполнение сту­пени турбины, с одной стороны, позволяет до максимума увели­чить средний диаметр турбины, а с другой — до минимума сокра­тить осевой люфт в ступени. Тем самым в корпусе стандартной длины удается разместить число ступеней турбин в 1,4 раза боль­ше, чем у серийных турбобуров.

Отсутствие взаимосвязи между осевыми люфтами турбины и осевой опоры шпинделя позволяет исключить из практики тур­бинного бурения торцовый износ лопаточных венцов турбин и повысить межремонтный период работы шпинделей.

Турбобуры этого типа состоят из трех турбинных секций и шпин­деля с двумя вариантами осевой опоры: подшипник типа ШШО и резинбметаллическая пята.

Редукторный турбобур.Главным недостатком турбобуров явля­ется их быстроходность. Это ограничивает возможность их исполь­зования в сочетании с долотами для низкооборотного бурения


Таблица 7.2 Технические характеристики редукторных турбобуров

 

Тип турбинной секции Расход жидкости, л/с Частота вращения, об/мин Крутящий момент, кН • м
ЗТСШ-195 2,20
  3,44
  4,32
А7ТТШ 1,86
  2,06
  2,40

Примечание. Передаточное число редуктора-вставки 3,67.

(до 200 об/мин). Редукторный турбобур лишен этого недостатка (табл. 7.2).

После многолетних работ коллективом сотрудников Пермского филиала ВНИИБТ был создан турбобур ТРМ-195. В основу конст­рукции турбобура положен агрегатный метод создания машин, поэтому он состоит из трех основных частей — турбобура, редук­тора-вставки и шпинделя.

Первая (турбобур) и третья (шпиндель) были рассмотрены выше, поэтому остановимся на редукторе-вставке (рис. 7.9). Он состоит из корпуса 3, передачи 6, размещенной в маслонапол-ненной камере 5, которая ограничена кожухом 7, системы мас-лозащиты с уплотнениями (верхним 4 и нижним 8), ведущего 2 и ведомого 11 валов вставки. Каждый из валов 2 и 11 установлен на двух опорах: сферической 7 и радиальной 10, связанной с корпу­сом 3 упругим элементом 9. При этом сферические опоры 7 уста­новлены на обоих валах со стороны передачи 6, а уплотнения 4 и 8 размещены соответственно на валах 2 и 11 ближе к сферической опоре 7.

В редукторном турбобуре редуктор-вставка устанавливается между турбобуром и шпинделем. Ведущий вал 2 вставки соединен с ва­лом турбобура, а ведомый вал 11 — с валом шпинделя.

Частота вращения и крутящий момент с вала турбобура переда­ются через ведущий вал 2 на передачу 6, в которой происходит Уменьшение частоты вращения и увеличение крутящего момента. Вращение с измененными параметрами через ведомый вал 11 пе­редается на вал шпинделя и далее — на долото. Буровой раствор обтекает маслонаполненную камеру 5 по кольцевому зазору между корпусом 3 и кожухом 1.

В 1975 г. Специальное конструкторско-технологическое бюро Погружного электрооборудования (Харьков), Могилевский маши-

 

 

ностроительный институт и ВНИИБТ провели совместные рабо-ты по созданию редукторов-вставок с принципиально новыми редуцирующими узлами — синусошариковыми.

На основании проведенных работ были созданы синусошари-ковые вставки, принятые к серийному производству: РСШ127-5• РСШ190-1,75; РСШ190-2; РСШ190-5. В обозначениях принято: - редуктор-вставка, С - синусная, Ш -- шариковая, 127 или 190 — диаметр в мм; 1,75; 2; 5 — передаточное число (отношение частоты вращения ротора электродвигателя к частоте вращения долота). Синусошариковые редукторы-вставки широко использу­ются при бурении электробурами.

В настоящее время промышленностью освоены и изготавлива­ются редукторы-вставки двух типов, со­зданные на базе:

зубчатых редуцирующих узлов для тур­бобуров;

синусошариковых редуцирующих уз­лов для электробуров.

Правила эксплуатации турбобуров.Каждый новый турбобур, получаемый с завода, перед отправкой на буровую проходит проверку в турборемонтном цехе предприятия бурения (экспедиции). Проверяются крепления гайки, перевод­ника, ниппеля и вращение вала. Турбо­буры снабжаются предохранительным колпаком на валу и заглушкой в пере­воднике во избежание засорения и пор­чи турбины во время транспортировки и хранении.

Рис. 7.9. Принципиальная схема редуктора-вставки: 7 — кожух; 2, 11 — валы; 3 — корпус; 4, 8 — уплотне­ния маслозащиты; 5 — мас-лонаполненная камера; 6 -передача; 7 — сферические опоры; 9 — упругий эле­мент; 10 — радиальная опора

Каждый турбобур имеет заводской паспорт в одном экземпляре и вклад­ную карточку, представляющую собой учетную карточку работы и ремонта тур­бобура. Паспорт турбобура хранится на ремонтной базе бурового предприятия, а вкладная карточка в период его пребы­вания на буровой — у бурового мастера. Во время нахождения турбобура в ремон­те карточка сдается на базу или завод. Турбобуры необходимо перевозить на специальных лафетах или автомашинах, оборудованных подъемными устройства­ми для погрузки и выгрузки. При разгруз­ке турбобуры нельзя сбрасывать, так как от сильного удара может погнуться вал


турбобура. Перед спуском в скважину нового или поступившего из ремонта турбобура следует проверить его работу на поверхности. Для этого турбобур соединяют с ведущей трубой и проверяют плав­ность его запуска при производительности насосов, соответствую­щей нормальному режиму его работы.

Запускают буровые насосы при открытой пусковой задвижке. Затем задвижку постепенно перекрывают и следят за давлением на манометре. Хорошо собранный и отрегулированный турбобур запускается при давлении до 2 МПа. Проверяют также осевой люфт вала, герметичность резьбовых соединений и отсутствие биения вала. Все данные опробования заносятся в буровой журнал. Если при опробовании обнаруживаются дефекты, турбобур в скважину не спускают.

В отдельных случаях, при отсутствии запасного турбобура, не вращающийся на поверхности турбобур все же спускают в сква­жину. Он может работать после того, как дана некоторая осевая нагрузка на долото. Если опущенный на забой турбобур работать все же не начинает, то его следует вращать («расхаживать») рото­ром, сохраняя нагрузку на забой. «Расхаживание» разрешается ве­сти не более 20...30 мин. Контроль за нормальной работой турбо­бура на забое осуществляется на буровой по показаниям маномет­ра и индикатора массы (веса).

При постоянной производительности насосов перепад дав­ления в турбобуре с изменением режима его работы почти не меняется. Резкое снижение или повышение давления на нагне­тательной линии указывает на ненормальную работу турбобура. О неполадках в турбобуре можно также судить по уменьшению принимаемой турбобуром осевой нагрузки и резкому снижению скорости бурения (если это не вызвано износом долота). Для не­прерывного контроля за скоростью вращения вала турбобура в про­цессе бурения скважин рекомендуется использовать турботахометр.

Снижение давления в нагнетательном трубопроводе вызывает­ся уменьшением количества жидкости, поступающей в турбобур. Причиной этого могут быть:

неисправность буровых насосов (нарушение герметичности поршней, уплотнений клапанов, засасывание насосом воздуха, за­сорение приемной сетки, уменьшение числа ходов насоса и т.д.);

утечки в резьбовых соединениях бурильных труб и переводников.

Для проверки герметичности колонны бурильных труб сле­дует при их подъеме через каждые пять-шесть свечей прокачи­вать буровой раствор. Повышение давления при прокачивании Указывает на течь в одной из свечей, поднятой в последней партии. Если в трубах течи не обнаруживается, то проверяют турбобур (возможны течи в переводнике турбобура). Резкое внезапное падение давления (почти до нуля) показывает, что произошла авария с переводником турбобура, срыв резьбы замков или труб.

 

Давление чаще всего повышается из-за засорения каналов тур. бины турбобура. Для предотвращения этого при бурении и опро­бовании турбобуров устанавливают фильтры. Когда буровой раствор загрязнен, частицы шлама после прекращения циркуляции выпа­дают из бурового раствора и осаждаются на турбине. Если при вклю­чении насоса полностью закрыть пусковую задвижку, то шлам (вы­буренная порода) забьет турбобур.

Полностью закрывать задвижку следует после промывки в тече­ние 5... 10 мин. Аналогичное засорение турбины шламом произой­дет, если во время бурения после выключения насоса сразу от­крыть пусковую задвижку. При этом возникает обратная цирку­ляция и осаждающийся на забой шлам засасывается в турбобур. Особенно часто это явление встречается при использовании воды в качестве промывочной жидкости. Для избежания засорения турбо­бура необходима тщательная промывка перед остановкой насосов.

Очень часто бывают случаи, когда давление в нагнетательной линии не падает, а турбобур «не принимает» нагрузку. Причиной этого может быть заклинивание шарошек долота, большая сработ-ка опор долота или неисправность турбобура. Чтобы выяснить при­чину ненормальной работы турбобура, поднимают бурильную ко­лонну.

Турбины турбобура выходят из строя главным образом вслед­ствие механического износа наружных, внутренних и торцовых поверхностей. Предупреждение износа турбин является одним из важнейших условий обеспечения эффективности работы турбобура.

После каждого рейса при подъеме турбобура необходимо про­верять его осевой люфт. Для этого вал турбобура опирают на стол ротора, у торца ниппеля на валу наносят риску, затем тур­бобур приподнимают и на валу точно так же наносят вторую риску. По расстоянию между рисками определяют величину осе­вого люфта, которую после каждого долбления заносят в суточ­ный рапорт и передают по вахте. Допустимая величина осевого люфта неодинакова для турбобуров различных типов (от 3 до 8 мм).

Не более чем через каждые два рейса в зависимости от условий бурения необходимо проверять и подкреплять машинными ключа­ми резьбы ниппеля и переводника.








Дата добавления: 2016-01-03; просмотров: 7811;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.05 сек.