Экологические последствия радиационных аварий

Радиоактивное загрязнение окружающей среды является наиболее важным экологическим последствием радиационных аварий с выбросами радионуклидов, основным фактором, оказывающим влияние на состояние здоровья и условия жизнедеятельности людей на территориях, подвергшихся радиоактивному загрязнению. Основными специфическими явлениями и факторами, обусловливающими экологические последствия при радиационных авариях и катастрофах, служат радиоактивные излучения из зоны аварии, а также из формирующегося при аварии и распространяющегося в приземном слое облака (облаков) загрязненного радионуклидами воздуха; радиоактивное загрязнение компонентов окружающей среды.

 

Воздушные массы, двигавшиеся 26 апреля 1986 г. на запад, 27 апреля на север и северо-запад, 28–29 апреля от северного направления повернули на восток, юго-восток и далее 30 апреля юг (на Киев).

 

Последующее длительное поступление радионуклидов в атмосферу происходило за счет горения графита в активной зоне реактора. Основной выброс радиоактивных продуктов продолжался в течение 10 суток. Однако истечение радиоактивных веществ из разрушенного реактора и формирование зон загрязнения продолжались в течение месяца. Долгосрочный характер воздействия радионуклидов определялся значительным периодом полураспада. Осаждение радиоактивного облака и формирование следа происходили длительное время. В течение этого времени изменялись метеорологические условия и след радиоактивного облака приобрел сложную конфигурацию. Фактически сформировались два радиоактивных следа: западный и северный. Наиболее тяжелые радионуклиды распространялись на запад, а основная масса более легких (йод и цезий), поднявшись выше 500–600 м (до 1,5 км), была перенесена на северо-запад.

В результате аварии около 5% радиоактивных продуктов, накопившихся за 3 года работы в реакторе, вышли за пределы промышленной площадки станции. Летучие изотопы цезия (134 и 137) распространились на огромные расстояния (значительное количество по всей Европе) и были обнаружены в большинстве стран и океанах Северного полушария. Чернобыльская авария привела к радиоактивному загрязнению территорий 17 стран Европы общей площадью 207,5 тыс. км2, с площадью загрязнения цезием выше 1 Кю/км2.

Если выпадения по всей Европе принять за 100%, то из них на территорию России пришлось 30%, Белоруссии — 23%, Украины — 19%, Финляндии — 5%, Швеции — 4,5%, Норвегии — 3,1%. На территориях России, Белоруссии и Украины в качестве нижней границы зон радиоактивного загрязнения был принят уровень загрязнения 1 Кю/км2.

Сразу после аварии наибольшую опасность для населения представляли радиоактивные изотопы йода. Максимальное содержание йода-131 в молоке и растительности наблюдалось с 28 апреля по 9 мая 1986 г. Однако в этот период “йодовой опасности” защитные мероприятия почти не проводились.

 

В дальнейшем радиационную обстановку определяли долгоживущие радионуклиды. С июня 1986 г. радиационное воздействие формировалось в основном за счет радиоактивных изотопов цезия, а в некоторых районах Украины и Белоруссии также и стронция. Наиболее интенсивные выпадения цезия характерны для центральной 30-кило-метровый зоны вокруг Чернобыльской АЭС. Другая сильно загрязненная зона — это некоторые районы Гомельской и Могилевской областей Белоруссии и Брянской области России, которые расположены примерно в 200 км от АЭС. Еще одна, северо-восточная зона расположена в 500 км от АЭС, в нее входят некоторые районы Калужской, Тульской и Орловской областей. Из-за дождей выпадения цезия легли “пятнами”, поэтому даже на соседних территориях плотность загрязнения могла различаться в десятки раз. Осадки сыграли существенную роль в формировании выпадений — в зонах выпадения дождевых осадков загрязнение в 10 и более раз превышало выпадение в “сухих” местах. При этом в России выпадения были “размазаны” на достаточно большой территории, поэтому общая площадь территорий, загрязненных выше 1 Кю/км2, в России наибольшая. А в Белоруссии, где выпадения оказались более сконцентрированными, образовалась наибольшая по сравнению с другими странами площадь территорий, загрязненных свыше 40 Кю/км2. Плутоний-239 как тугоплавкий элемент не распространился в значительных количествах (превышающих допустимые значения в 0,1 Кю/км2) на большие расстояния. Его выпадения практически ограничились 30-километровой зоной. Однако эта зона площадью около 1 100 км2 (где и стронция-90 в большинстве случаев выпало более 10 Кю/км2) стала надолго непригодной для проживания человека и хозяйствования, так как период полураспада плутония-239 составляет 24,4 тыс. лет.

 

В России общая площадь радиоактивно загрязненных территорий с плотностью загрязнения выше 1 Кю/км2 по цезию-137 достигала 100 тыс. км2, а свыше 5 Кю/км2 — 30 тыс. км2. На загрязненных территориях оказалось 7 608 населенных пунктов, в которых проживало около 3 млн. человек. Вообще же радиоактивному загрязнению подверглись территории 16 областей и 3 республик России (Белгородской, Брянской, Воронежской, Калужской, Курской, Липецкой, Ленинградской, Нижегородской, Орловской, Пензенской, Рязанской, Саратовской, Смоленской, Тамбовской, Тульской, Ульяновской, Мордовии, Татарстана, Чувашии).

 

Радиоактивное загрязнение затронуло более 2 млн. га сельхозугодий и около 1 млн. га лесных земель. Территория с плотностью загрязнения 15 Кю/км2 по цезию-137, а также радиоактивные водоемы находятся только в Брянской области, в которой прогнозируется исчезновение загрязнения примерно через 100 лет после аварии. При распространении радионуклидов транспортирующей средой является воздух или вода, а роль концентрирующей и депонирующей среды выполняют почва и донные отложения. Территории радиоактивного загрязнения — это, главным образом, сельскохозяйственные районы. Это значит, что радионуклиды могут попасть с продуктами питания в организм человека. Радиоактивное загрязнение водоемов, как правило, представляет опасность лишь в первые месяцы после аварии. Наиболее доступны для усвоения растениями “свежие” радионуклиды при поступлении аэральным путем и в начальный период пребывания в почве (например, для цезия-137 заметно уменьшение поступления в растения с течением времени, т. е. при “старении” радионуклида).

 

Сельскохозяйственная продукция (прежде всего молоко) при отсутствии соответствующих запретов на ее употребление стала главным источником облучения населения радиоактивным йодом в первый месяц после аварии. Местные продукты питания вносили существенный вклад в дозы облучения и во все последующие годы. В настоящее время, спустя 20 лет, потребление продукции подсобных хозяйств и даров леса дает основной вклад в дозу облучения населения. Принято считать, что 85% суммарной прогнозируемой дозы внутреннего облучения на последующие 50 лет после аварии составляет доза внутреннего облучения, обусловленная потреблением продуктов питания, которые выращены на загрязненной территории, и лишь 15% падает на дозу внешнего облучения. В результате радиоактивного загрязнения компонентов окружающей среды происходят включение радионуклидов в биомассу, их биологическое накопление с последующим негативным воздействием на физиологию организмов, репродуктивные функции и т. д.

 

На любом этапе получения продукции и приготовления пищи можно уменьшить поступление радионуклидов в организм человека. Если тщательно мыть зелень, овощи, ягоды, грибы и другие продукты, радионуклиды не будут попадать в организм с частичками почвы. Эффективные пути уменьшения поступления цезия из почвы в растения — глубокая перепашка (делает цезий недоступным для корней растений); внесение минеральных удобрений (снижает переход цезия из почвы в растение); подбор выращиваемых культур (замена на виды, накапливающие цезий в меньшей степени). Уменьшить поступление цезия в продукты животноводства можно подбором кормовых культур и использованием специальных пищевых добавок. Сократить содержание цезия в продуктах питания можно различными способами их переработки и приготовления. Цезий растворим в воде, поэтому за счет вымачивания и варки его содержание уменьшается.

 

Если овощи, мясо, рыбу варить 5–10 минут, то 30–60% цезия перейдет в отвар, который затем стоит слить. Квашение, маринование, соление снижает содержание цезия на 20%. То же относится и к грибам. Их очистка от остатков почвы и мха, вымачивание в солевом растворе и последующее кипячение в течение 30–45 минут с добавлением уксуса или лимонной кислоты (воду сменить 2–3 раза) позволяют снизить содержание цезия до 20 раз. У моркови и свеклы цезий накапливается в верхней части плода, если ее срезать на 10–15 мм, его содержание снизится в 15–20 раз. У капусты цезий сосредоточен в верхних листьях, удаление которых уменьшит его содержание до 40 раз. При переработке молока на сливки, творог, сметану содержание цезия снижается в 4–6 раз, на сыр, сливочное масло — в 8–10 раз, на топленое масло — в 90–100 раз.

 

Радиационная обстановка зависит не только от периода полураспада (для йода-131 — 8 дней, цезия-137 — 30 лет). Со временем радиоактивный цезий уходит в нижние слои почвы и становится менее доступным для растений. Одновременно снижается и мощность дозы над поверхностью земли. Скорость этих процессов оценивается эффективным периодом полураспада. Для цезия-137 он составляет около 25 лет в лесных экосистемах, 10–15 лет на лугах и пашнях, 5–8 лет в населенных пунктах. Поэтому радиационная обстановка улучшается быстрее, чем происходит естественный расход радиоактивных элементов. С течением времени плотность загрязнения на всех территориях уменьшается, а их общая площадь сокращается.

 

Радиационная обстановка также улучшалась в результате проведения защитных мероприятий. Для предотвращения разноса пыли асфальтировались дороги и накрывались колодцы; перекрывались крыши жилых домов и общественных зданий, где в результате выпадений скапливались радионуклиды; местами снимался почвенный покров; в сельском хозяйстве проводились специальные мероприятия для снижения загрязнения сельскохозяйственной продукции.

 

Химическая авария – это нарушение технологических процессов на производстве, повреждение трубопроводов, емкостей, хранилищ, транспортных средств, приводящее к выбросу аварийных химически опасных веществ в атмосферу в количествах, представляющих опасность для жизни и здоровья людей, функционирования биосферы.

Особенности ликвидации последствий химической аварии

В результате аварии на химически опасном объекте может произойти нарушение технологических процессов, повреждение трубопроводов, емкостей, хранилищ, транспортных средств, приводящее к выбросу химически опасных веществ (ХОВ) в атмосферу в количествах, вызывающих массовое поражение людей, животных, а также химическое заражение воды, почвы и т.п. При этом образуется зона химического заражения.

 

В результате быстрого (1–3 мин.) перехода в атмосферу части химически опасного вещества из емкости при её разрушении образуется первичное облако. Вторичное облако ХОВ образуется в результате испарения разлившегося вещества с подстилающей поверхности.

 

При авариях на химически опасных объектах могут возникнуть чрезвычайные ситуации с химической обстановкой четырех основных типов.

 

Чрезвычайные ситуации с химической обстановкой первого типа возникают в случае разгерметизации емкостей или технологического оборудования, содержащих газообразные (под давлением), криогенные, перегретые сжиженные ХОВ. При этом образуется первичное парогазовое или аэрозольное облако с высокой концентрацией ХОВ, распространяющееся по ветру.

 

Чрезвычайные ситуации с химической обстановкой второго типа возникают при аварийных выбросах или проливах используемых в производстве, хранящихся или транспортируемых сжиженных ядовитых газов (аммиак, хлор и др.), перегретых летучих токсических жидкостей с температурой кипения ниже температуры окружающей среды (окись этилена, фосген, окислы азота, сернистый ангидрид, синильная кислота и др.). При этом часть ХОВ (не более 10 %) быстро испаряется, образуя первичное облако паров смертельной концентрации; другая часть выливается в поддон или на подстилающую поверхность, постепенно испаряется, образуя вторичное облако с поражающими концентрациями.

 

Чрезвычайные ситуации с химической обстановкой третьего типа возникают при проливе в поддон (обвалование) или на подстилающую поверхность значительного количества сжиженных (при изотермическом хранении) или жидких ХОВ с температурой кипения ниже или близкой к температуре окружающей среды (фосген, четырехокись азота и др.), а также при горении большого количества удобрений (например, нитрофоски) или комковой серы. При этом образуется вторичное облако паров ХОВ с поражающими концентрациями, которое может распространяться на большие расстояния.

 

Чрезвычайные ситуации с химической обстановкой четвертого типа возникают при аварийном выбросе (проливе) значительного количества малолетучих ХОВ (жидких с температурой кипения значительно выше температуры окружающей среды или твердых) – несимметричный диметилгидразин, фенол, сероуглерод, диоксин, соли синильной кислоты. При этом происходит заражение местности (грунта, растительности, воды) в опасных концентрациях.

 

Основным поражающим фактором при чрезвычайных ситуациях с химической обстановкой первого типа является ингаляционное воздействие на людей и животных высоких (смертельных) концентраций паров ХОВ. Масштабы поражения при этом зависят от количества выброшенных ХОВ, размеров облака, концентрации ядовитого вещества, скорости ветра, состояния приземного слоя атмосферы (инверсия, конвекция, изотермия), плотности паров ХОВ (легче или тяжелее воздуха), времени суток, характера местности (открытая местность или городская застройка), плотности населения.

 

Поражающие факторы в чрезвычайных ситуациях с химической обстановкой второго типа проявляются в ингаляционном воздействии на людей и животных смертельных концентраций первичного облака (кратковременное) и в продолжительном воздействии (часы, сутки) вторичного облака с поражающими концентрациями паров. Кроме того, пролив ХОВ может заразить грунт и воду.

 

При чрезвычайных ситуациях с химической обстановкой третьего типа образуется вторичное облако паров ХОВ с поражающими концентрациями, которое может распространяться на большие расстояния.

 

Основными поражающими факторами при чрезвычайных ситуациях с химической обстановкой четвертого типа являются опасные последствия заражения людей и животных при длительном нахождении их на зараженной местности в результате перорального и резорбтивного воздействия ХОВ на организм.

 

Основными способами локализации и обеззараживания источников химического заражения являются:

· при локализации облаков ХОВ – постановка водяных завес, рассеивание облака с помощью тепловых потоков;

· при обеззараживании облаков ХОВ – постановка жидкостных завес с использованием нейтрализующих растворов, рассеивание облаков воздушно-газовыми потоками;

· при локализации пролива ХОВ – обвалование пролива, сбор жидкой фазы ХОВ в приямки – ловушки, засыпка пролива сыпучими сорбентами, снижение интенсивности испарения покрытием зеркала пролива полимерной пленкой, разбавление пролива водой, введение загустителей;

· при обеззараживании (нейтрализации) пролива ХОВ – заливка нейтрализующим раствором, разбавление пролива водой с последующим введением нейтрализаторов, засыпка нейтрализующими веществами, засыпка твердыми сорбентами с последующим выжиганием, загущение с последующим вывозом и сжиганием.

 

К ликвидации последствий аварии, связанной с разливом (выбросом, истечением) ХОВ, в первую очередь приступает личный состав штатной газоспасательной службы объекта. Главная задача газоспасательной службы – выполнение спасательных работ, эвакуация работающих из опасных мест, оказание пострадавшим первой медицинской помощи. Личный состав газоспасательной службы включает сложные аварийные работы в газоопасных местах, где требуется обязательное использование изолирующих (кислородных) противогазов.

 

Аварийно-спасательные формирования локализуют и ликвидируют аварии, ведущие к образованию очагов заражения ХОВ. Порядок действий при локализации очагов с ХОВ в каждом конкретном случае зависит от вида ядовитого вещества, характера повреждений, технологической схемы производства и других условий. На коммуникациях с ХОВ перекрываются краны и другие запорные устройства, чтобы прекратить поступление ядовитых веществ (газа, жидкостей) в поврежденный участок трубопровода, или закрывают его концы деревянными (металлическими) пробками, а на трещины накладывают муфты. При наличии на объекте обваловки, препятствующей растеканию ядовитой жидкости, разлившуюся жидкость из мест застоя перекачивают в закрытые емкости, а остатки её дегазируют.

 

Наиболее распространенными и опасными ХОВ являются аммиак и хлор.

 

При авариях с выбросом аммиака отключают поврежденный участок коммуникации. Вылившийся аммиак обильно орошают водой (10 ч. воды на 1 ч. аммиака). В случае повреждения емкости с аммиаком включают автоматическую установку, перекачивают аммиак из поврежденной емкости в исправную, место разлива аммиака орошают водой. Для защиты органов дыхания в помещениях, где разлит аммиак, используют шланговые противогазы с активной подачей воздуха.

 

При аварии с выбросом жидкого хлора отключают поврежденный участок на коммуникации, после прекращения или ослабления утечки хлора поврежденный участок трубопровода поливают водой, на дефектное место трубопровода надевают хомут. При необходимости перекачивают хлор в запасную емкость, место повреждения обильно орошают водой. Работы ведутся в противогазах.

 

После локализации очагов разлива ХОВ приступают к обеззараживанию (дегазации) очагов заражения. В первую очередь дегазируют подъездные пути и внутризаводские дороги (дворы жилых зданий), затем обеззараживают участки местности и объекты, которые могут быть источниками заражения воздуха. Ядовитые вещества обеззараживают путем поливки дегазирующими растворами, для чего используют поливо-моечные машины, автоцистерны, мотопомпы, пожарные автомобили и другие машины, и механизмы, приспособленные для разлива жидкостей. С участков местности и дорог без покрытия для удаления ХОВ бульдозерные звенья срезают зараженный слой грунта или засыпают зараженный участок незараженным грунтом.

 

Для оказания помощи пострадавшим в очаг поражения вводятся подразделения радиационной, химической, биологической и медицинской защиты, спасательные подразделения и силы для проведения работ по ликвидации последствий проливов ХОВ. Их основные усилия направляются на оказание немедленной медицинской помощи пострадавшим и их эвакуацию на незараженную местность, а также на проведение обезвреживания проливов ХОВ. Эти силы выполняют свои задачи в тесном взаимодействии с газоспасательной службой объектов.

 

В первую очередь эвакуации подлежат лица, находящиеся без средств защиты органов дыхания. Затем эвакуируют людей, имеющих противогазы и уже получивших первую доврачебную помощь. В последнюю очередь эвакуируют людей, укрытых в убежищах с фильтровентиляционными установками. Пункты сбора поражённых располагают на незараженных участках, с наветренной стороны от зоны разлива ХОВ.

 

Эвакуация поражённых и непоражённых из очага поражения потребует выделения необходимого количества транспорта. Для розыска, выноса и посадки поражённых людей на транспорт привлекаются носилочные звенья формирований различного назначения. Эвакуация непоражённого населения, находящегося в убежищах, зданиях, укрытиях производится пешим порядком, а также на любом виде общественного и личного транспорта.

 

В ходе спасательных работ во вторичном очаге заражения основные усилия направляются на локализацию источников заражения.

 

Продолжительность работы личного состава одной смены в очаге химического поражения зависит от времени допустимого непрерывного пребывания в средствах индивидуальной защиты (при температуре воздуха от +24 до +20 ° С – 40–50 мин., от +19 до + 15 ° С – 2 ч., при температуре ниже + 15 °С – 3 ч. и более).

 

Очаги химического поражения считаются ликвидированными, когда пребывание людей без средств защиты в них становится безопасным.

После окончания работ в районе сбора должны быть проведены мероприятия по специальной обработке техники и личного состава формирований.

 

Органы исполнительной власти субъектов Российской Федерации, местного самоуправления, органы управления ГОЧС на всех уровнях должны знать химически опасные объекты на подведомственной территории, тип и количество ХОВ на этих объектах, иметь прогноз образования возможных зон химического заражения при авариях, организовать мониторинг химически опасных объектов, предусмотреть в планах действий по предупреждению и ликвидации чрезвычайных ситуаций необходимые мероприятия по ликвидации последствий возможных химических аварий.


 








Дата добавления: 2015-11-28; просмотров: 2232;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.021 сек.