Операционные усилители. С развитием интегральной технологии производства наиболее распространенным элементом для построения электронных устройств стал операционный усилитель
С развитием интегральной технологии производства наиболее распространенным элементом для построения электронных устройств стал операционный усилитель. Он представляет собой высококачественный усилитель постоянного тока с дифференциальным входом, обладающий высоким коэффициентом усиления, большим входным и малым выходным сопротивлениями.
На принципиальных схемах в самом общем виде операционный усилитель обычно изображают в виде прямоугольника с двумя входными и одним выходным выводами (рис. 14.5). Один из входов усилителя, напряжение на котором усиливается с тем же знаком, называется неинвертирующим и обозначается «+». Напряжение на другом входе – инвертирующем («–») – усиливается с изменением знака на обратный. Коэффициент усиления в схеме с разомкнутой обратной связью одинаков для обоих входов операционного усилителя, причем во всем рабочем температурном диапазоне. Этого достигают выполнением всех элементов усилителя, в том числе и входных транзисторов, на одной кремниевой пластине.
Основные параметры схем, выполняемых на операционном усилителе (ОУ), удобно рассматривать, считая его идеальным, с параметрами:
1) коэффициент усиления в схеме с разомкнутой обратной связью бесконечно большой;
2) напряжение на выходе равно нулю при нулевой разности входных напряжений;
3) входное сопротивление бесконечно большое;
4) выходное сопротивление равно нулю;
5) полоса пропускания частот бесконечна (усилитель не вносит задержки).
Схема операционного усилителя, изображенная на рис. 14.6 называется инвертирующей схемой ОУ. Характерной особенностью ее является то, что неинвертирующий вход заземлен, а инвертирующий вход связан с выходом через сопротивление обратной связи Для инвертирующего включения ОУ характерны перемена знака входного сигнала, а также зависимость коэффициента усиления (коэффициента передачи) только от параметров цепи обратной связи. При достаточно большом значении коэффициента усиления, даже в случае его изменения от экземпляра к экземпляру ОУ или от температуры, параметры усилителя практически не меняются. Такая схема, называемая инвертирующим повторителем входного сигнала, используется как промежуточное звено при связи источника сигнала, имеющего относительно большое внутреннее сопротивление (но меньшее, чем входное сопротивление ОУ), с низкоомным приемником.
Определим с учетом знака выходного напряжения значение входного тока
. (14.3)
Из этого следует, что напряжение на инвертирующем входе для данной схемы стремится к нулю. Поэтому здесь инвертирующий вход может рассматриваться как точка «кажущейся» земли.
На основе инвертирующего усилителя выполняют сумматоры, у которых с инвертирующим входом связано несколько источников сигналов со своими входными сопротивлениями (рис. 14.7).
Поскольку инвертирующий вход, называемый в данном случае «суммирующей точкой», сохраняет потенциал земли, входные токи каждого из источников не зависят друг от друга. Через элемент обратной связи протекает сумма этих токов.
При малом переменном напряжении входного сигнала, соизмеримом с падением напряжения на открытом диоде, для его выпрямления могут применяться схемы на основе ОУ. В них практически исключается влияние падения напряжения на диоде. На рис. 14.8 представлена схема однополупериодного выпрямителя, где диод VD1 включен в цепь обратной связи.
Для схемы, показанной на рис. 14.9 а с учетом того, что потенциал точки суммирования токов за счет обратной связи совпадает с потенциалом земли, имеют место следующие зависимости
;
. (14.4)
Таким образом, посредством этой схемы осуществляется интегрирование входного сигнала с изменением знака. Такой интегратор может применяться, для сглаживания выпрямленного напряжения. Например, подключив в схеме (рис. 14.8) параллельно резистору конденсатор, получим выпрямитель.
Схему дифференциатора, выполняющего операцию, обратную интегрированию, т.е. дифференцирование, можно получить из предыдущей схемы, поменяв местами конденсатор и резистор (рис. 14.9 б). Для этой схемы характерны следующие
соотношения
; . (14.5)
В схеме неинвертирующего усилителя (рис. 14.10) источник входного сигнала с внутренним сопротивлением связан с неинвертирующим входом, а инвертирующий заземлен через резистор и имеет обратную связь через резистор .
Этот усилитель в определенном масштабе воспроизводит на выходе входное напряжение. Достоинством его является большое входное и малое внутреннее выходное сопротивления. При = 0 усилитель превращается в повторитель входного напряжения.
Для сравнения двух сигналов используют схемы ОУ в режиме компаратора. В этих схемах для получения максимальной точности, определяемой чувствительностью схемы, петля обратной связи обычно не замыкается.
На рис. 14.11 показан компаратор, применяемый для сравнения разнополярных входных сигналов – сигнала и опорного . Если одно напряжение
превышает другое, то выходная часть ОУ за счет большого коэффициента усиления переходит из одного состояния насыщения в другое. Таким образом, компаратор служит для преобразования разности аналоговых входных сигналов в дискретный выходной.
Реальный ОУ отличается от рассмотренного ранее идеального наличием входных токов и выходного сопротивления, несбалансированностью обоих плеч входного дифференциального усилителя и конечным значением коэффициента усиления . Поэтому выбор параметров элементов внешних связей ОУ с другими узлами схемы связан с его электрическими параметрами. Для этого в справочной литературе приводится около 20 параметров.
Дата добавления: 2015-12-22; просмотров: 1397;