Полевые транзисторы. Полевые транзисторы разделяют на униполярные (с одним p-n - переходом) и полевые с изолированным затвором (без p-n - перехода) или со структурой МДП (металл –
Полевые транзисторы разделяют на униполярные (с одним p-n - переходом) и полевые с изолированным затвором (без p-n - перехода) или со структурой МДП (металл – диэлектрик – полупроводник). Действие полевых транзисторов основано на процессах управления основными носителями тока электрическим полем, перпендикулярным направлению их движения в полупроводнике. По способам управления указанные разновидности полевых транзисторов существенно различаются.
Униполярный транзистор представляет собой полупроводник с электронно-дырочным переходом, управляемым обратным напряжением. Конструкция и условные обозначения транзистора показаны на рис. 12.17.
а) б) в)
Рис. 12.17
Вывод З базы (в данном случае р-типа переход) принято называть затвором полевого транзистора. Вывод И от канала, из которого при электронном канале (n-типа) ток выходит, называется истоком. Второй вывод С называется стоком. Токи, проходящие по ним, называются токами истока и стока .
Униполярный транзистор выполняется из кристалла кремния или германия, например р-типа (подложка), в котором создаются две области n-типа: исток И и сток С – и р-n переход, область n которого является каналом.
Транзистор с изолированным затвором (металл М), (рис. 12.18) представляет собой полупроводник П с токопроводящим слоем у поверхности соприкосновения с диэлектриком Д, концентрация носителей тока в котором изменяется в функции напряженности электрического поля, перпендикулярного направлению тока. Токопроводящий канал формируется (индуцируется) из неосновных носителей полупроводника, например из электронов n полупроводника с дырочной р электропроводностью (подложки) и электрическим полем, обусловленным напряжением .
В канале электроны являются основными носителями тока. Токопроводящий канал имеет противоположную подложке электропроводность и называется инверсионным слоем полупроводника. Инверсионный слой образуется у поверхности соприкосновения полупроводника с диэлектриком, поскольку электрическое поле сосредоточено практически только в диэлектрике (непроводящем слое). На границе их раздела происходит разрыв вектора напряженности поля, что в соответствии с электромагнитной теорией означает наличие поверхностного заряда.
Концентрация носителей тока в канале определяется количеством перемещенных электрическим полем из объема полупроводника электронов и, следовательно зависит от напряжения на затворе. Изменяется, в данном случае увеличивается, при возрастании напряжения и ток стока Iс, пропорциональный концентрации основных (для канала) носителей. В рассмотренном МДП-транзисторе с индуцированным каналом происходит обогащение канала носителями тока при положительном (канал n-типа) или при отрицательном (р-типа) напряжении . Как и униполярный, МДП-транзистор с индуцированным каналом может управляться напряжением одного знака. Однако образование инверсионного слоя возможно и при отсутствии напряжения на затворе. Поэтому существуют МДП-транзисторы со встроенным каналом. Их особенностью является возможность работы как с обогащением, так и с объединением канала, то есть возможность управления напряжением с изменяющейся полярностью. Истоком МДП-транзистора с каналом n-типа является область полупроводника, подключенная к отрицательному зажиму источника , а каналом р-типа – к положительному.
Транзистор со структурой МДП выполняется обычно на полупроводниковом кристалле П, кремния с дырочной проводимостью, в котором создают две области n-типа – исток И и сток С (рис. 12.19 а). Поверхность кристалла между истоком и стоком покрывают диэлектриком Д – двуокисью кремния, на котором располагается металлический слой М затвора З. Условные графические обозначения транзисторов с изолированным затвором и каналами n- и p-типов приведены на рис.12.19 б, в.
а) б) в)
Рис.12.19
Полевые транзисторы, особенно с изолированным затвором, имеют очень большое входное сопротивление и практически не требуют мощности для управления ими. Для действия полевых транзисторов используются основные носители заряда полупроводника. Поскольку концентрация неосновных носителей является функцией внутренней энергии твердого тела (тепловой и др. видов), а концентрация основных носителей практически не зависит от нее, то полевые транзисторы менее подвержены воздействию температуры, радиационного излучения и других факторов, изменяющих внутреннюю энергию твердого тела.
Важная особенность полевых транзисторов состоит в возможности их работы при переменном напряжении UСИ, поскольку при симметричной конструкции исток и сток транзистора одинаковы, т. е. их можно использовать в цепях переменного тока как управляемые резисторы.
Дата добавления: 2015-12-22; просмотров: 1179;