Линейная корреляция. Данная корреляция характеризует линейную взаимосвязь в вариациях переменных
Данная корреляция характеризует линейную взаимосвязь в вариациях переменных. Она может быть парной (две коррелирующие переменные) или множественной (более двух переменных), прямой или обратной — положительной или отрицательной, когда переменные варьируют соответственно в одинаковых или разных направлениях.
Если переменные — количественные и равноценные в своих независимых наблюдениях при их общем количестве , то важнейшими эмпирическими мерами тесноты их линейной взаимосвязи являются коэффициент прямой корреляции знаков австрийского психолога Г.Т.Фехнера (1801-1887) и коэффициенты парной, чистой (частной) и множественной (совокупной) корреляции английского статистика-биометрика К.Пирсона (1857-1936).
Коэффициент парной корреляции знаков Фехнераопределяет согласованность направлений в индивидуальных отклонениях переменных и от своих средних и . Он равен отношению разности сумм совпадающих ( ) и несовпадающих ( ) пар знаков в отклонениях и к сумме этих сумм:
Величина Кф изменяется от -1 до +1. Суммирование в (1) производится по наблюдениям , которые не указаны в суммах ради упрощения. Если какое-то одно отклонение или , то оно не входит в расчет. Если же сразу оба отклонения нулевые: , то такой случай считается совпадающим по знакам и входит в состав . В таблице 12.1. показана подготовка данных для расчета (1).
Таблица 12.1 Данные для расчета коэффициента Фехнера.
Магазин | Число работников, тыс. чел. | Товарооборот, у.е. | Отклонение от средних и | Сравнение знаков и | ||
совпа-дение (Ск) | несов-падение (Нк) | |||||
0,2 | 3,1 | +0,0 | -0,9 | |||
0,1 | 3,1 | -0,1 | -0,9 | |||
0,4 | 5,0 | +0,2 | +1,0 | |||
0,2 | 4,4 | +0,0 | +0,4 | |||
0,1 | 4,4 | -0,1 | +0,4 | |||
Итого | 1,0 | 20,0 | - | - |
По (1) имеем Кф = (3 — 2)/(3 + 2) = 0,20. Направление взаимосвязи в вариациях !!Средняя численность работников|численности работников]] и объема товарооборота — положительное (прямолинейное): знаки в отклонениях и и в своем большинстве (в 3 случаях из 5) совпадают между собой. Теснота взаимосвязи переменных по шкале Чеддока — слабая.
Коэффициенты парной, чистой (частной) и множественной (совокупной) линейной корреляции Пирсона, в отличие от коэффициента Фехнера, учитывают не только знаки, но и величины отклонений переменных. Для их расчета используют разные методы. Так, согласно методу прямого счета по несгруппированным данным, коэффициент парной корреляции Пирсона имеет вид:
Этот коэффициент также изменяется от -1 до +1. При наличии нескольких переменных рассчитывается коэффициент множественной (совокупной) линейной корреляции Пирсона. Для трех переменных x, y, z он имеет вид
Этот коэффициент изменяется от 0 до 1. Если элиминировать (совсем исключить или зафиксировать на постоянном уровне) влияние на и , то их "общая" связь превратится в "чистую", образуя чистый (частный) коэффициент линейной корреляции Пирсона:
Этот коэффициент изменяется от -1 до +1. Квадраты коэффициентов корреляции (2)-(4) называются коэффициентами (индексами) детерминации — соответственно парной, чистой (частной), множественной (совокупной):
Каждый из коэффициентов детерминации изменяется от 0 до 1 и оценивает степень вариационной определенности в линейной взаимосвязи переменных, показывая долю вариации одной переменной (y), обусловленную вариацией другой (других) — x и y. Многомерный случай наличия более трех переменных здесь не рассматривается.
Согласно разработкам английского статистика Р.Э. Фишера (1890-1962), статистическая значимость парного и чистого (частного) коэффициентов корреляции Пирсона проверяется в случае нормальности их распределения, на основании -распределения английского статистика В.С. Госсета (псевдоним "Стьюдент"; 1876-1937) с заданным уровнем вероятностной значимости и имеющейся степени свободы , где — число связей (факторных переменных). Для парного коэффициента имеем его среднеквадратическую ошибку и фактическое значение -критерия Стьюдента:
Для чистого коэффициента корреляции при расчете его вместо (n-2) надо брать , т.к. в этом случае имеется m=2 (две факторные переменные x и z). При большом числе n>100 вместо (n-2) или (n-3) в (6) можно брать n, пренебрегая точностью расчета.
Если tr > tтабл. , то коэффициент парной корреляции — общий или чистый является статистически значимым, а при tr ≤ tтабл. — незначимым.
Значимость коэффициента множественной корреляции R проверяется по F — критерию Фишера путем расчета его фактического значения
При FR > Fтабл. коэффициент R считается значимым с заданным уровнем значимости a и имеющихся степенях свободы и , а при Fr≤ Fтабл — незначимым.
В совокупностях большого объема n > 100 для оценки значимости всех коэффициентов Пирсона вместо критериев t и F применяется непосредственно нормальный закон распределения (табулированная функция Лапласа-Шеппарда).
Наконец, если коэффициенты Пирсона не подчиняются нормальному закону, то в качестве критерия их значимости используется Z — критерий Фишера, который здесь не рассматривается.
Условный пример расчета(2) — (7)дан в табл. 12.2, где взяты исходные данные табл.12.1 с добавлением к ним третьей переменной z — размера общей площади магазина (в 100 кв. м).
Таблица 12.2. Подготовка данных для расчета коэффициентов корреляции Пирсона
Мага-зин | Показатели | ||||||||
к | xk | yk | zk | xkyk | xkzk | ykzk | |||
0,2 | 3,1 | 0,1 | 0,62 | 0,02 | 0,31 | 0,04 | 9,61 | 0,01 | |
0,1 | 3,1 | 0,1 | 0,31 | 0,01 | 0,31 | 0,01 | 9,61 | 0,01 | |
0,4 | 5,0 | 1,0 | 2,00 | 0,40 | 5,00 | 0,16 | 25,00 | 1,00 | |
0,2 | 4,4 | 0,2 | 0,88 | 0,04 | 0,88 | 0,04 | 19,36 | 0,04 | |
0,1 | 4,4 | 0,6 | 0,44 | 0,06 | 2,64 | 0,01 | 19,36 | 0,36 | |
Итого | 1,0 | 20,0 | 2,0 | 4,25 | 0,53 | 9,14 | 0,26 | 82,94 | 1,42 |
Согласно (2) — (5), коэффициенты линейной корреляции Пирсона равны:
Взаимосвязь переменных x и y является положительной, но не тесной, составляя по их парному коэффициенту корреляции величину и по чистому — величину и оценивалась по шкале Чеддока соответственно как "заметная" и "слабая".
Коэффициенты детерминации dxy =0,354 и dxy.z = 0,0037 свидетельствуют, что вариация у (товарооборота) обусловлена линейной вариацией x (численности работников) на 35,4% в их общей взаимосвязи и в чистой взаимосвязи — только на 0,37%. Такое положение обусловлено значительным влиянием на x и y третьей переменной z — занимаемой магазинами общей площади. Теснота ее взаимосвязи с ними составляет соответственно rxz=0,677 и ryz=0,844.
Коэффициент множественной (совокупной) корреляции трех переменных показывает, что теснота линейной взаимосвязи x и z c y составляет величину R = 0,844, оцениваясь по шкале Чеддока как "высокая", а коэффициент множественный детерминации — величину D=0,713, свидетельствуя, что 71,3 % всей вариации у (товарооборота) обусловлены совокупным воздействием на нее переменных x и z. Остальные 28,7% обусловлены воздействием на y других факторов или же криволинейной связью переменных y, x, z.
Для оценки значимости коэффициентов корреляции возьмем уровень значимости . По исходным данным имеем степени свободы для и для . По теоретической таблице находим соответственно tтабл.1. = 3,182 и tтабл.2. = 4,303. Для F-критерия имеем и и по таблице находим Fтабл. = 19,0. Фактические значения каждого критерия по (6) и (7) равны:
Все расчетные критерии меньше своих табличных значений: все коэффициенты корреляции Пирсона статистически незначимы.
Дата добавления: 2015-12-22; просмотров: 730;