Главный электрический распределительный щит цеха завода
Пример электроснабжения здания. Используются вводно-распределительное устройство (одно или несколько в зависимости от величины объекта и потребляемых нагрузок), кабель, материалы для его прокладки (труба ПВХ, гофрированная труба, соединительные изделия (углы для поворотов кабельных трасс, тройники для их соединения и разветвления, коробки распределительные, разветвительные, муфты "труба-труба", "труба-коробка" и т.д), металлические лотки, стальные трубы (особенно когда речь идет об объектах с повышенной огнеопасностью), распределительные щиты, обслуживающие отдельные направления электроснабжения здания (щиты вентиляционных установок, розеточных сетей, освещения и др.), сами устройства электропотребления (светильники, электроприводные устройства) и коммутационные устройства (розетки промышленные, бытовые, выключатели и т.д).
Вот основной перечень используемых материалов и оборудования в электроснабжении здания. Само же исполнение может варьировать очень сильно. От недорогих отечественных до превышающих на порядок, по стоимости, импортных. Пример в разнице электроснабжения завода и электроснабжения жилого дома был приведен выше.
Пример электроснабжения промышленных предприятий.
способ укладки кабеля на промышленном предприятии внутреннее электроосвещение промышленных предприятий
Как правило, заводы и промышленные предприятия оборудованы дорогостоящими производственными линиями, системами контроля и автоматики. Непредвиденная остановка таких линий в период рабочего цикла может привести к браку производимой продукции, в некоторых случаях к ремонту самой производственной линии, а так же может поставить под угрозу безопасность рабочего персонала.
Все стороны деятельности человека, и в том числе природоохранная деятельность, неразрывно связанно с производством и потреблением энергии, прежде всего электрической. Однако резкий рост темпов развития энергетики, без которого пока что немыслим научно - технический процесс, ставит две важнейшие проблемы, от успешного решения которых во многом зависит будущее человечества.
Во-первых, это проблема обеспеченности энергетическими ресурсами, во-вторых, проблема влияния энергетики на состояние окружающей среды.
Существует довольно много источников энергии, отличающихся друг от друга не только физическими и химическими, но и по величине запасов, исчерпаемости и возобновляемости, воздействию на окружающую среду и стоимости. В настоящее время выбор того или иного источника определяется, главным образом, именно затратами, связанными с добычей и потреблением энергии. При этом часто не учитывается экологический и социальный ущерб.
Энергетика является одной из самых загрязняющих отраслей народного хозяйства. При неразумном подходе происходит нарушение нормального функционирования всех компонентов биосферы (воздуха, почвы, воды, животного и растительного мира), а в исключительных случаях, подобных Чернобылю, под угрозой оказывается сама жизнь. Поэтому главным должен стать подход с экологических позиций, учитывающих интересы не только настоящего, но и будущего.
Наиболее распространенной в настоящее время является теплоэнергетика, обеспечивающая нашу страну ¾ всей вырабатываемой энергии. Теплоэнергетика основывается на сжигании различных видов органического топлив – нефти, газа, угля, торф, сланца.
Также распространены гидроэнергетика, использующая водные ресурсы, и ядерная энергетика, основывающаяся на ядерных реакциях.
ТЭС является одними из основных загрязнителей атмосферы твердыми частицами золы, окислами серы и азота, другими веществами, оказывая вредное воздействие на здоровье людей, а также углекислым газом, способствующим возникновению «парникового эффекта».
ГЭС, особенно на равнинных реках, например на Волге, связаны со строительством крупных плотин и водохранилищ, а это ведет к затоплению ценных сельскохозяйственных угодий, лесов, памятников природы, культуры и архитектуры, переселению людей из родных мест, гибели значительного количества рыбы, замедлению скорости течения реки, что значительно снижает ее способность к самоочищению, изменению местного климата из – за повышения влажности и др. только ГЭС, построенные на горных реках с естественными водопадами, к тому же не слишком мощные, лишены значительной части указанных недостатков.
АЭС в нормальном, безаварийном состоянии наносят значительно меньший ущерб окружающей среде, чем ТЭС и ГЭС. После Чернобыля было значительно повышено внимание к проблеме безопасной их эксплуатации.
Источники Энергии.
ТЕПЛОВАЯ ЭЛЕКТРОСТАНЦИЯ (ТЭС), электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива.
Среди ТЭС преобладают тепловые паротурбинные электростанции (ТПЭС), на которых тепловая энергия используется в парогенераторе для получения водяного пара высокого давления, приводящего во вращение ротор паровой турбины, соединённый с ротором электрического генератора (обычно синхронного генератора).
ТПЭС, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называют конденсационными электростанциями
(официальное назв — Государственная районная электрическая станция, или ГРЭС). На ГРЭС вырабатывается около 2/3 электроэнергии, производимой на ТЭС. ТПЭС оснащенные теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называют теплоэлектроцентралями (ТЭЦ); ими вырабатывается около
1/3 электроэнергии, производимой на ТЭС.
ТЭС с приводом электрогенератора от газовой турбины называют газотурбинными электростанциями (ГТЭС).
ГИДРОЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ, гидроэлектростанция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического. оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения которая, в свою очередь, преобразуется в электрическую энергию.
Напор ГЭС создается концентрацией падения реки на используемом участке плотиной(рис1), либо деривацией (рис. 2), либо плотиной и деривацией совместно (рис. 3). Основное энергетическое оборудование ГЭС размещается в здании ГЭС: в машинном зале электростанции — гидроагрегаты, вспомогательное оборудование, устройства автоматического управления и контроля; в центральном посту управления — пульт оператора-диспетчера или автооператор гидроэлектростанции.
Повышающая трансформаторная подстанция размещается как внутри здания ГЭС, так и в отдельных зданиях или на открытых площадках.
Распределительные устройства зачастую располагаются на открытой площадке.
Здание ГЭС может быть разделено на секции с одним или несколькими агрегатами и вспомогательным оборудованием, отделённые от смежных частей здания. При здании ГЭС или внутри него создаётся монтажная площадка для сборки и ремонта различного оборудования и для вспомогательных операций по обслуживанию ГЭС.
По установленной мощности (в.Мвт) различают ГЭС мощные (св. 250), средние (до 25) и малые (до 5). Мощность ГЭС зависит от напора На (разности уровней верхнего и нижнего бьефа), расхода воды, используемого в гидротурбинах, и кпд гидроагрегата . По ряду причин (вследствие, например сезонных изменений уровня воды в водоёмах, непостоянства нагрузки энергосистемы, ремонта гидроагрегатов или гидротехнических сооружений и т. п.) напор и расход воды непрерывно меняются, а кроме того, меняется расход при регулировании мощности ГЭС.
Различают годичный, недельный и суточный циклы режима работы
ГЭС. По максимально используемому напору ГЭС делятся на высоконапорные (более 60 м), средненапорные (от 25 до 60 м) и низконапорные (от 3 до 25 м).
На равнинных реках напоры редко превышают 100 м , в горных условиях посредством плотины можно создавать напоры до 300 м и более, а с помощью деривации — до 1500 м.
Классификация по напору приблизительно соответствует типам применяемого энергетического оборудования: на высоконапорных ГЭС применяют ковшовые и радиально-осевые турбины с металлическими спиральными камерами; на средненапорных — поворотнолопастные и радиально-осевые турбины с железобетонными и металлическими спиральными камерами, на низконапорных — поворотнолопастные турбины в железобетонных
На крупных равнинных реках основное русло перекрывается земляной плотиной, к которой примыкает бетонная водосливная плотина и сооружается здание ГЭС.
Атомная ЭЛЕКТРОСТАНЦИЯ (АЭС), электростанция, в которой атомная
(ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор (см. Ядерный реактор). Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию, В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем (в основе 233U, 235U,
239Pu) При делении 1 г изотопов урана или плутония высвобождается 22 500 квт • ч, что эквивалентно энергии, содержащейся в 2800 кг условного топлива.
Выбор преимущественно применяемого типа реактора определяется главным образом накопленным опытом в реактороносителе а также наличием необходимого промышленного оборудования, сырьевых запасов и т. л.
В СССР строят главным образом графито-водные и водо-водяные реакторы. На
АЭС США наибольшее распространение получили водо-водяные реакторы. Графито- газовые реакторы применяются в Англии.
ЭНЕРГИЯ СОЛНЦА
В последнее время интерес к проблеме использования солнечной энергии резко возрос, и хотя этот источник также относится к возобновляемым, внимание, уделяемое ему во всем мире, заставляет нас рассмотреть его возможности отдельно.
Потенциальные возможности энергетики, основанной на использовании непосредственно солнечного излучения, чрезвычайно велики.
Заметим, что использование всего лишь 0.0125 % этого количества энергии
Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики, а использование 0.5 % - полностью покрыть потребности на перспективу.
К сожалению, вряд ли когда-нибудь эти огромные потенциальные ресурсы удастся реализовать в больших масштабах. Одним из наиболее серьезных препятствий такой реализации является низкая интенсивность солнечного излучения. Даже при наилучших атмосферных условиях (южные широты, чистое небо) плотность потока солнечного излучения составляет не более 250
Вт/м2. Поэтому, чтобы коллекторы солнечного излучения «собирали» за год энергию, необходимую для удовлетворения всех потребностей человечества нужно разместить их на территории 130 000 км!
Необходимость использовать коллекторы огромных размеров, кроме того, влечет за собой значительные материальные затраты. Простейший коллектор солнечного излучения представляет собой зачерненный металлический ( как правило, алюминиевый ) лист, внутри которого располагаются трубы с циркулирующей в ней жидкостью. Нагретая за счет солнечной энергии, поглощенной коллектором, жидкость поступает для непосредственного использования.
Солнечная энергетика относится к наиболее материалоемким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Подсчеты показывают, что для производства 1 МВт*год электрической энергии с помощью солнечной энергетики потребуется затратить от 10 000 до 40 000 человеко-часов. В традиционной энергетике на органическом топливе этот показатель составляет 200-500 человеко-часов.
Ветровая энергия.
Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры - от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем.
Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все ее потребности в электроэнергии! Климатические условия позволяют развивать ветроэнергетику на огромной территории - от наших западных границ до берегов Енисея.
В наши дни к созданию конструкций ветроколеса-сердца любой ветроэнергетической установки-привлекаются специалисты-самолетостроители, умеющие выбрать наиболее целесообразный профиль лопасти, исследовать его в аэродинамической трубе. Усилиями ученых и инженеров созданы самые разнообразные конструкции современных ветровых установок.
ЭНЕРГИЯ ЗЕМЛИ.
Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека.
Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится-нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов.
Дата добавления: 2015-12-16; просмотров: 1154;