Реальная вольтамперная характеристика p-n перехода
При выводе уравнения (1.37) не учитывались такие явления, как термогенерация носителей в запирающем слое перехода, поверхностные утечки тока, падение напряжения на сопротивлении нейтральных областей полупроводника, а также явления пробоя при определенных обратных напряжениях. Поэтому экспериментальная вольтамперная характеристика p-n перехода (кривая 2 на рис. 1.11) отличается от теоретической (кривая 1).
При обратном включении p-n перехода отличия обусловлены генерацией носителей зарядов и пробоем p-n перехода. Количество генерируемых носителей пропорционально объему запирающего слоя, который зависит от ширины p-n перехода. Поскольку ширина запирающего слоя пропорциональна , ток генерации будет расти при увеличении обратного напряжения. Поэтому на реальной характеристике при увеличении обратного напряжения до определенного значения наблюдается небольшой рост обратного тока. Возрастанию обратного тока способствуют также токи утечки.
При некотором обратном напряжении наблюдается резкое возрастание обратного тока. Это явление называют пробоем p-n перехода. Существуют три вида пробоя: туннельный, лавинный и тепловой. Туннельный и лавинный пробои представляют собой разновидности электрического пробоя
Рисунок 1.11 Отличие реальной вольтамперной характеристики p-n перехода
от теоретической.
и связаны с увеличением напряженности электрического поля в переходе. Тепловой пробой определяется перегревом перехода.
Туннельный пробой обусловлен прямым переходом электронов из валентной зоны одного полупроводника в зону проводимости другого, что становится возможным, если напряженность электрического поля в p-n переходе из кремния достигает значения 4×105 В/см, а из германия -2×105 В/см. Такая большая напряженность электрического поля возможна при высокой концентрации примесей в p- и n-областях, когда толщина p-n перехода становится весьма малой (см. формулу (1.31)). Под действием сильного электрического поля валентные электроны вырываются из связей. При этом образуются парные заряды электрон-дырка, увеличивающие обратный ток через переход. На рис. 1.10 кривая 5 представляет собой обратную ветвь вольт-амперной характеристики перехода, соответствующую туннельному пробою.
В широких p-n переходах, образованных полупроводниками с меньшей концентрацией примесей, вероятность туннельного просачивания электронов уменьшается и более вероятным становится лавинный пробой. Он возникает тогда, когда длина свободного пробега электрона в полупроводнике значительно меньше толщины p-n перехода. Если за время свободного пробега электроны приобретают кинетическую энергию, достаточную для ионизации атомов в p-n переходе, наступает ударная ионизация, сопровождающаяся лавинным размножением носителей зарядов. Образовавшиеся в результате ударной ионизации свободные носители зарядов увеличивают обратный ток перехода. Увеличение обратного тока характеризуется коэффициентом лавинного умножения М:
, (1.40)
где UПРОБ - напряжение начала пробоя; m зависит от материала полупроводника. На рис 1.11 лавинному пробою соответствует кривая 4.
Тепловой пробой обусловлен значительным ростом количества носителей зарядов в p-n переходе за счет нарушения теплового режима. Подводимая к p-n переходу мощность Рподв = IобрUобр расходуется на его нагрев.
Выделяющаяся в запирающем слое теплота отводится преимущественно за счет теплопроводности. Отводимая от p-n перехода мощность Ротв пропорциональна разности температур перехода Tпер и окружающей среды Токр:
,
где Rт - тепловое сопротивление, 0К/Вт, определяющее перепад температур, необходимый для отвода 1 Вт мощности от p-n перехода в окружающую среду.
При плохих условиях отвода теплоты от перехода возможен его разогрев до температуры, при которой происходит тепловая ионизация атомов. Образующиеся при этом носители заряда увеличивают обратный ток, что приводит к дальнейшему разогреву перехода. В результате такого нарастающего процесса p-n переход недопустимо разогревается и возникает тепловой пробой, характеризующийся разрушением кристалла (кривая 3).
Увеличение числа носителей зарядов при нагреве p-n перехода приводит к уменьшению его сопротивления и выделяемого на нем напряжения. Вследствие этого на обратной ветви вольтамперной характеристики при тепловом пробое появляется участок с отрицательным дифференциальным сопротивлением (участок АВ на рис. 1.11).
Отличия реальной характеристики от теоретической на прямой ветви, в основном, обусловлены распределенным (объёмным) сопротивлением электронной и дырочной областей r1 за пределами запирающего слоя (рисунок 1.12).
Если сопротивление запирающего слоя обозначить rд, то кристалл полупроводника с запирающим слоем можно представить в виде последовательного соединения резисторов rд и r1.
При прохождении тока IПР на сопротивлении r1 падает часть напряжения внешнего источника и на запирающем слое действует напряжение UПЕР = UПР – IПР×r1. Уравнение вольтамперной характеристики в этом случае может быть записано в следующем неявном виде:
.
Рисунок 1.12 Упрощенная эквивалентная схема p-n перехода с распределенным сопротивлением полупроводника.
Поскольку UПЕР < UПР реальная характеристика идет ниже теоретической. Когда напряжение на запирающем слое становится равным контактной разности потенциалов, запирающий слой исчезает, и дальнейшее увеличение тока ограничивается распределенным сопротивлением полупроводников p- и n-типа. Таким образом, в точке С при UПР = UК вольтамперная характеристика переходит в прямую линию.
27. Виды пробоев p–n-перехода.
Пробоем называют резкое изменение режима работы p-n-перехода, находящегося под большим обратным напряжением. ВАХ для больших значений обратных напряжений показана на рис. 1.5
Рис. 1.5
Началу пробоя соответствует точка А. После этой точки дифференциальное сопротивление перехода стремится к нулю.
Различают три вида пробоя p-n-перехода:
- Туннельный пробой (А-Б),
- Лавинный пробой (Б-В),
- Тепловой пробой (за т.В).
Туннельныйпробой возникает при малой ширине p-n-перехода (например, при низкоомной базе), когда при большом обратном напряжении электроны проникают за барьер без преодоления самого барьера. В результате туннельного пробоя ток через переход резко возрастает и обратная ветвь ВАХ идет перпендикулярно оси напряжений вниз.
Лавинныйпробой возникает в том случае, если при движении до очередного соударения с нейтральным атомом кристалла электрон или дырка приобретают энергию, достаточную для ионизации этого атома, при этом рождаются новые пары электрон-дырка, происходит лавинообразное размножение носителей зарядов; здесь основную роль играют неосновные носители, они приобретают большую скорость. Лавинный пробой имеет место в переходах с большими удельными сопротивлениями базы («высокоомная база»), т.е. в p-n-переходе с широким переходом.
Тепловойпробой характеризуется сильным увеличением тока в области p-n-перехода в результате недостаточного теплоотвода.
Если туннельный и лавинный пробои, называемые электрическими, обратимы, то после теплового пробоя свойства перехода меняются вплоть до разрушения перехода.
Напряжения и токи в p-n-переходах зависят от параметров перехода и его температуры.
Поверхностный пробой. Распределение напряженности электрического поля в p-n-переходе может существенно изменить заряды, имеющиеся на поверхности полупроводника. Поверхностный заряд может привести к увеличению или уменьшению толщины перехода, в результате чего на поверхности перехода может наступить пробой при напряженности поля, меньшей той, которая необходима для возникновения пробоя в толще полупроводника. Это явление называют поверхностным пробоем. Большую роль при возникновении поверхностного пробоя играют диэлектрические свойства среды, граничащей с поверхностью полупроводника. Для снижения вероятности поверхностного пробоя применяют специальные защитные покрытия с высокой диэлектрической постоянной. Донорная примесь: основные носители заряда - свободные электроны. Остается положительный ион примеси. Акцепторная примесь: основные носители заряда—дырки. Остается отрицательный ион примеси. В месте контактадонорного и акцепторного полупроводников возникает электронно-дырочный переход (p-n-переход).
Дата добавления: 2015-12-10; просмотров: 1459;