Евангелие от генной инженерии. ГМО – это хорошо

 

ДНК изучена очень хорошо: этой двухцепочечной молекуле посвящено более двух миллионов научных публикаций. Молекулу ДНК можно рассматривать как текст, написанный с использованием алфавита из четырех букв (нуклеотидов). Совокупность всех нуклеотидов, составляющих хромосомы любого организма (будь то бактерия, гриб или человек), называется геномом. Отдельные участки генома представляют собой обособленные функциональные элементы наследственности – гены. Сегодня, используя инструменты генной инженерии, мы умеем обращаться с генетическим материалом примерно так же, как со словами, напечатанными в текстовом редакторе. Гены можно удалять, изменять, переносить из генома одного организма в геном другого и даже синтезировать в пробирке. Организмы, наследственная информация которых изменена такими методами, называются генетически модифицированными (ГМ) и могут отличаться по некоторым своим свойствам от тех исходных организмов, из которых они были выведены.

 

 

Помните, как после укуса радиоактивного паука герой комиксов и нескольких фильмов Питер Паркер становится человеком-пауком? Хотя человека-паука с помощью генной инженерии пока не получили (или он очень хорошо скрывается), оказалось, что не сложно создать козу-паука. В 20°2 году в одном из самых престижных научных журналов Science появилась статья о том, что генетически модифицированные клетки млекопитающих могут производить паутину1. Канадская фирма Nexia вывела коз, в геном которых был встроен ген белка паутины, и показала, что молоко этих коз можно использовать в качестве сырья для получения материала под названием биосталь.

Биосталь оказалась прочнее и легче кевлара – материала, из которого делаются современные бронежилеты. Недавно в Японии аналогичным образом улучшили шелк, изменив геном шелкопряда. Шелк с примесью белков паутины прочнее и эластичнее обычного2, он лучше подходит для создания хирургических нитей. Отдельные созданные учеными варианты белков паутины даже обладают антимикробными свойствами3.

Другим козам в геном смогли встроить ген антибактериального белка лизоцима4. В норме этот белок содержится в грудном молоке женщин, защищая от инфекционных воспалений груди. Потребление обогащенного лизоцимом молока генетически модифицированных коз может защитить многих детей разного возраста от инфекционных заболеваний желудочно-кишечного тракта. Эти болезни являются причиной смерти от одного до двух миллионов детей ежегодно. Еще одно изобретение – изготовление кошерного сыра. Традиционно для изготовления сыра берется сычуг (отдел пищеварительного тракта жвачных животных), высушивается и помещается в молоко. Сычуг содержит сычужные ферменты, превращающие молоко в сыр, но в Ветхом Завете сказано: “Не вари козленка в молоке его матери”, и такой сыр, полученный из мяса и молока, – пища, неугодная Б-гу из Торы. Генные инженеры взяли гены сычужных ферментов и встроили их в геном бактерии. Такие бактерии вырабатывают сычужные ферменты, а мы с их помощью можем получать кошерный сыр без использования кишки жвачных животных. Никогда еще наука так тесно не сотрудничала с религией.

Недавно генным инженерам удалось встроить в геном томата ряд генов львиного зева (ярко окрашенных цветов, как правило желтых, фиолетовых или синих, напоминающих по форме цветка львиную пасть), чтобы увеличить производство особых веществ – антоцианов. В норме антоцианы присутствуют в большом количестве в голубике, ежевике и черной смородине, которым они придают характерный темно-синий цвет. Употребление антоцианов связывают со сниженным риском развития некоторых форм рака5, сердечно-сосудистых заболеваний6 и ожирения (как было показано в опытах на грызунах)7. В одном исследовании мыши, генетически предрасположенные к раку, которых кормили ГМ помидорами, обогащенными антоцианами, жили в среднем на 25 % дольше!8 Хотя существуют селекционные сорта “синих” помидоров с повышенным содержанием антоцианов в кожуре, в ГМ помидорах антоцианы производятся и в мякоти, поэтому итоговое их содержание намного выше и сопоставимо с содержанием в вышеупомянутых ягодах.

Благодаря антоцианам подобные генетически улучшенные помидоры примерно вдвое дольше хранятся и значительно меньше подвержены воздействию плесени. Их можно собирать позже, а это дает им возможность выработать больше питательных веществ. К сожалению, я пока не могу попробовать эти помидоры и сказать, что они вкуснее (хотя их создатели утверждают, что это так), ведь в связи с жестким регулированием ГМО томатам предстоит пройти целый ряд проверок, прежде чем они окажутся на прилавках магазинов.

Генная инженерия играет огромную роль и в современной медицине. В 1978 году были созданы первые трансгенные бактерии, вырабатывающие человеческий инсулин (белковый гормон, регулирующий углеводный обмен в организме), а сегодня подавляющее большинство препаратов инсулина, поддерживающих жизнь миллионов людей, больных диабетом, производят генетически модифицированные микроорганизмы9. Аналогично с помощью генетически модифицированных организмов производят факторы свертывания крови для больных гемофилией (врожденным заболеванием, при котором плохо сворачивается кровь)10 и гормон роста для детей с генетически обусловленной низкорослостью11. Есть и более экзотичные разработки, например по созданию безобидных генетически модифицированных бактерий, которые смогут защищать зубы от кариеса, устраняя вредных бактерий12, или уберечь человека от ожирения13.

Генетически модифицированные растения могут применяться для производства антител (молекул, используемых иммунной системой для распознания вирусов, бактерий и других чужеродных объектов), гормонов, вакцин и ферментов. Например, ученые научились производить внутренний фактор человека в растениях14. Внутренний фактор секретируется желудком и переводит неактивную форму витамина B12, поступающую с пищей, в активную, которую легко усвоить. Витамин B12 очень важен для жизнедеятельности нашего организма. В частности, он необходим для нормального протекания процесса репликации – удвоения молекул ДНК в клетках, происходящего перед их делением. У некоторых людей секреция внутреннего фактора нарушена. Это может быть связано, например, с аутоиммунными заболеваниями или гастритом. Такие люди плохо усваивают витамин B12 из пищи и заболевают злокачественным малокровием. Сейчас это заболевание лечится инъекциями витамина B12, но налаженное производство внутреннего фактора благодаря развитию генной инженерии позволит заменить уколы препаратами, принимаемыми вместе с едой.

Раньше считалось, что наследственные заболевания, при которых некоторые гены человека не функционируют или плохо функционируют в результате мутаций, принципиально неизлечимы. Но теперь в руках врачей появился новый метод лечения – генная терапия. Он основывается на внесении работающих копий недостающего или неисправного гена в клетки человека с помощью видоизмененных вирусов. Сегодня благодаря генной терапии лечатся некоторые формы врожденной слепоты15, иммунодефицита16 и даже рака. В последнем случае создаются специальные генетически модифицированные иммунные клетки человека (лимфоциты), способные к более эффективному поиску и уничтожению раковых клеток17. Эти технологии уже сегодня спасают жизни, но, увы, доступны пока немногим.

Сложно понять, почему генная инженерия не пользуется популярностью среди защитников окружающей среды, ведь ее можно использовать для уменьшения негативного влияния человечества на природу. Взять хотя бы проект Enviropig, или “Экосвинка”18. Всем живым существам для развития нужен фосфор. Большая часть фосфора в стандартном корме для свиней находится в такой форме, которая свиньями не усваивается, – в форме фитатов, солей фитиновой кислоты. В результате возникают две проблемы. Во-первых, свиней нужно подкармливать фосфором в виде пищевых добавок. Во-вторых, весь неусвоенный фосфор оказывается в свином навозе. Навоз смывается водой, и его компоненты в огромном количестве попадают в близлежащие водоемы, в которых вскоре начинается цветение – разрастание водорослей, которые, в отличие от свиней, прекрасно усваивают фитаты! Из-за цветения в водоемах повышается содержание ядовитых веществ, продуктов метаболизма водорослей. Погибают рыбы и многие другие водные организмы, возникает локальная экологическая катастрофа.

Именно поэтому и придумали “экосвинок” – генетически модифицированных свиней, способных усваивать фитаты. Они способны на это потому, что в их геном встроили ген, кодирующий фермент, необходимый для расщепления фитатов, позаимствованный из кишечной палочки. Была надежда, что люди, обеспокоенные проблемой загрязнения окружающей среды, поддержат технологию и предпочтут “экосвинку” обычным свиньям. Но надежда не оправдалась – неприязнь к ГМО оказалась сильнее любви к природе. Создатели “экосвинки” до сих пор не нашли партнеров, которые вывели бы продукт на рынок, но этот подход существует и ждет момента, когда общественное сознание будет готово принять новую технологию.

В фильме Джеймса Кэмерона “Аватар” инопланетная флора и фауна на планете Пандора светились, и этот свет заменял жителям планеты искусственное освещение. Генная инженерия позволяет создавать светящиеся в темноте растения, отчасти воплощающие эту фантастическую мечту в реальность. Необходимые для свечения гены были заимствованы у светлячков19. Представьте, что вы сможете устроить романтический ужин, но вместо свечей его будут освещать зеленые ростки. Или что такие удивительные растения могут расти в парке, по обочине дороги. И снижать опасность парка вечером для вашей дочери-подростка! Едва ли данный подход решит все энергетические проблемы человечества, но это новый экологически чистый источник света, прекрасный символ зеленой энергетики. Увы, как и в случае с “экосвинкой”, проект не был широко поддержан защитниками окружающей среды. Более того, под давлением общественного мнения площадка Kickstarter, где осуществлялся добровольный сбор пожертвований на развитие проекта, запретила основателям проекта предлагать спонсорам семена светящихся растений.

Гены флуоресцентных белков некоторых кораллов или медуз можно встроить в геном бабочки таким образом, что глаза насекомого засветятся зеленым при облучении ультрафиолетом20. Такие бабочки представляют не только научную, но и эстетическую ценность, а также особый интерес для коллекционеров (я не шучу!). Аналогично получены светящиеся в ультрафиолете рыбки, мыши, кролики и кошки. И кстати, о кошках! Посредством генной инженерии можно создать гипоаллергенных домашних любимцев для людей, страдающих аллергией21. В этом, конечно, найдется и определенный минус, ведь аллергия является для некоторых хорошим (а порой и единственным) аргументом, чтобы не дать завести домашнее животное соседу или соседке по комнате в общежитии или своей второй половине.

По данным Всемирной организации здравоохранения, десятки миллионов людей страдают от пищевой аллергии, которая распространена прежде всего среди детей. Только в США каждые три минуты кто-то оказывается в неотложке из-за острой аллергической реакции на еду22. Чаще всего аллергия возникает на арахис и другие орехи, на крабов, креветок и рыбу, но иногда даже на яблоки. Во многих случаях известно, какой именно белок вызывает аллергию, поэтому можно создать генетически модифицированный организм без этого белка или с меньшим его содержанием. Такой организм будет безопасен для аллергиков. Разработки по созданию гипоаллергенных яблок и некоторых других продуктов уже ведутся23.

Всемирная организация здравоохранения предупреждает о возможных негативных последствиях чрезмерного употребления сахара24. А что делать, если хочется сладкого, но не хочется рисковать здоровьем? Тропическое растение Thaumatococcus danielli содержит ген, кодирующий белок тауматин, который в тысячи раз слаще сахара. Так давайте употреблять пищу с тауматином!

Увы, природных источников тауматина довольно мало. Поэтому генные инженеры работают над созданием микроорганизмов25 и растений, производящих этот белок. Первые призваны служить источником тауматина, а вторые могут просто иметь экзотичные вкусовые качества. Приятным дополнительным эффектом внедрения тауматина в растения является их повышенная устойчивость к ряду инфекций26. Конечно, вкус тауматина немного отличается от вкуса сахара и некоторым может не нравиться. Но и тут придет на помощь генная инженерия: почему бы не попробовать изменить ген тауматина, чтобы создать белок с более приятным вкусом? Возможно, в будущем появится особая “генетическая кулинария”, когда повара станут соревноваться в создании самых вкусных белков и их сочетаний?

Генная инженерия нашла применение даже в современном искусстве. Например, есть технология, которая называется ДНК-оригами. Представьте: мы смешиваем определенные последовательности молекул ДНК в пробирке, а потом под мощным электронным микроскопом видим, что эти молекулы соединились друг с другом, причем строго определенным образом, образуя наноструктуры заранее выбранной формы. Это может быть звездочка, треугольник, буква алфавита или даже смайлик. Идея принадлежит американскому ученому Полу Ротмунду, а его работа “Складывание ДНК для создания фигурок в наномасштабе” в 2006 году была опубликована в журнале Nature27. Впоследствии ДНК-оригами даже нашло потенциальное практическое применение. С его помощью возможно создание трехмерных сверхмалых “ящиков" из ДНК, хранящих и доставляющих лекарственные средства в клетки28.

Генная инженерия уже применяется в самых разных сферах человеческой жизни – от искусства и развлечений до лечения наследственных заболеваний, а также в рамках фундаментальных научных исследований. Но центральной темой общественных и политических дискуссий, связанных с генной инженерией, является использование генетически модифицированных организмов в качестве продуктов питания.

На сегодняшний день население Земли составляет около 7 миллиардов человек, и все эти люди хотят есть, пить и выращивать детей. Несмотря на все достижения в области производства пищи, около миллиарда людей на планете получают недостаточно еды, чтобы восполнить энергетические потребности организма. Еще около миллиарда людей страдают от нехватки витаминов и других питательных веществ из-за неполноценного питания. В том числе от недоедания страдают около 165 миллионов детей в возрасте до пяти лет. И это вопреки тому, что на протяжении истории человечества ситуация постепенно улучшалась: доля недоедающих убывала благодаря многочисленным прорывам в области сельского хозяйства.

В десятом тысячелетии до нашей эры человечество впервые научилось отбирать и культивировать такие растения, как ячмень, горох, чечевица, нут. В XV веке происходит глобальный обмен культурными растениями: помидорами, картофелем, какао, специями, кофе, сахарным тростником. Растения попадают в новые экосистемы, адаптируются к новым условиям жизни. Существенная часть прироста массы и разнообразия сельскохозяйственной продукции произошла за счет изменений генов живых организмов29. Сравните, например, дикую кукурузу теосинте, имеющую маленький, тоньше пальца невзрачный колосок, и современную крупную и сладкую кукурузу, выведенную благодаря селекции. Посмотрите, как отличаются между собой по цвету, вкусу и запаху разные сорта помидоров, яблок, винограда. Разные породы коров тоже могут отличаться количеством и качеством производимого молока. Источником этого разнообразия являются мутации – генетические изменения.

Изменения в генах культурных растений фиксировались людьми как осознанно, так и неосознанно, когда они выбирали, что сеять, а что нет, или скрещивали растения разных сортов. При скрещивании отдаленных родственников возникают новые комбинации вариантов генов (аллелей), и, как следствие, появляются новые комбинации свойств. Позже выяснилось, что можно получать новые сорта растений, воздействуя на них радиационным излучением или определенными химическими веществами – мутагенами. Радиация вызывала многочисленные мутации, изменения сразу большого числа генов. Лишь некоторые изменения были полезными, а многие – вредными.

От вредных мутаций приходилось избавляться путем последовательного скрещивания новых форм между собой, пока в результате интенсивного отбора не оставались достаточно здоровые особи с новыми признаками. Но никогда эта технология не гарантировала, что в результате мутаций и многочисленных скрещиваний не изменится какое-то другое важное свойство растения, например содержание каких-нибудь питательных веществ. На смену таким не слишком предсказуемым и не слишком эффективным технологиям пришла генная инженерия, которая дает возможность целенаправленно менять наследственную информацию живых организмов. Если в основе селекции лежат случайные генетические изменения и искусственный отбор, то в основе генной инженерии лежит продуманный до деталей акт творения.

Конечно, генная инженерия не является единственным способом модернизации сельского хозяйства. Едва ли ее вклад на данный момент сопоставим с появлением тракторов и комбайнов, существенно облегчающих вспашку, а также сбор и транспортировку урожая. Я также не думаю, что удастся победить голод, не решив проблему распределения пищи, ведь зачастую дело не в ее физической нехватке. Тем не менее генная инженерия позволяет значительно увеличить урожайность полей, поднять качество продуктов питания, в ряде случаев снизить издержки производства и, как следствие, цены на продукты питания и сделать их доступнее.

Более эффективное производство означает, что меньше земель будет использовано под сельскохозяйственные нужды и меньший ущерб будет нанесен окружающей среде: вместо разрушения природных экосистем для превращения их в поля мы можем выращивать больше еды на меньшей территории. Для удовлетворения голода нам не придется вырубать леса и осушать болота, которые, будучи сложными и богатыми экосистемами, служат домом для многочисленных форм флоры и фауны – от одноклеточных организмов до насекомых, млекопитающих и птиц.

Двести лет назад один человек, работающий на ферме, едва мог прокормить собственную семью. Как следствие, в производстве еды была вынуждена участвовать большая часть населения, все должны были работать на полях. В 1940 году, по данным Департамента сельского хозяйства США, один фермер в среднем мог прокормить 19 человек, а сейчас – 155! Интенсификация сельского хозяйства приводит к тому, что все больше и больше людей могут заниматься не производством пищи, а чем-то еще, в том числе быть художниками, учеными, музыкантами, программистами, инженерами. Эффективное сельское хозяйство способствует развитию культуры и технологий.

Есть еще одна заслуга генной инженерии, связанная с уменьшением нагрузки, которой сельское хозяйство подвергает окружающую среду. Вместо того чтобы поливать поля инсектицидами с самолетов, невольно поражая соседние с полями участки земли и некоторых ни в чем не виновных членистоногих, мы можем создать растения, несъедобные для вредителей. Борьба с вредителями становится точечной, с меньшим количеством побочных эффектов. Генные инженеры умеют делать так, чтобы ядовитый для вредителей белок производился только в определенной части растения, например в листьях картошки, которые едят личинки колорадских жуков, но не в клубнях. Кроме того, используются белки, ядовитые не для всех насекомых, а только для отдельных групп, к которым и относятся вредители. Это безопаснее и эффективнее, чем массовая обработка полей ядохимикатами.

В 2014 году вышла статья в научном журнале PLOS ONE30 об изменениях на фермах, где выращивали два типа растений, созданных методами генной инженерии. Благодаря растениям, устойчивым к вредителям, урожайность полей увеличилась почти на 25 %, количество используемых пестицидов сократилось на 42 %, затраты на покупку пестицидов уменьшились на 43 %. Благодаря устойчивым к гербицидам растениям урожайность полей увеличилась на 9 %, количество используемых пестицидов не изменилось, но затраты на их покупку сократились на 25 % за счет перехода на более выгодные средства борьбы с сорняками. В обоих случаях доходы фермеров выросли более чем на 60 %. То, что внедрение упомянутых ГМО снижает количество используемых пестицидов, независимо подтвердил в своем отчете Американский департамент сельского хозяйства (USDA)31.

В 2012 году в журнале Nature была опубликована статья, в которой было показано, что в период с 1990 по 2010 год в Северном Китае благодаря внедрению генетически модифицированных растений, устойчивых к вредителям, и, следовательно, снижению использования пестицидов удалось не только уменьшить количество вредных насекомых на полях, но и увеличить количество трех групп членистоногих-хищников: божьих коровок, пауков и златоглазок. Более того, хищники, которых стали меньше травить инсектицидами, расползались на соседние поля, и количество вредителей уменьшалось по всей округе32.

Снижение количества используемых пестицидов и самолетного топлива, необходимого для их распыления, увеличение урожая полей без освоения новых земель и разрушения природных экосистем, светящиеся растения и экологически более чистое животноводство… Я хочу, чтобы все, кому не безразлично состояние окружающей среды, еще раз задумались о положительных перспективах внедрения биотехнологий.

Еще один триумф ждал генную инженерию в борьбе с вирусами растений. В период с 1956 по 1968 год из-за вирусных инфекций площади плантаций папайи на острове Оаху Гавайского архипелага сократились с 243 гектаров до 16 (более чем на 94 %). Карантин и долгие попытки вывести устойчивые к вирусу сорта методами традиционной селекции не помогли остановить инфекцию. Выращивание папайи практически прекратилось. В 1991 году были проведены полевые испытания генетически модифицированной папайи, устойчивой к вирусу. Через 77 дней после начала испытаний 95 % обычной папайи, произраставшей на экспериментальных полях, оказались зараженными, но ни одно трансгенное растение не пострадало33. После ряда дополнительных проверок и испытаний в 1998 году коммерческое выращивание гавайской генетически модифицированной папайи было одобрено, а производство этого растения восстановлено.

Но сколько бы замечательных продуктов генной инженерии ни придумало человечество, будет мало толку, если никто не захочет их использовать. Страх перед ГМО распространен по всему миру, он влияет на решения политиков и тормозит развитие биотехнологий. Мы не сможем двигаться дальше, пока не разберемся в причинах этого страха и не попробуем его развеять.

 

Глава 2








Дата добавления: 2015-12-10; просмотров: 977;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.