Проверка качества работы генератора
От качества работы ГСЧ зависит качество работы всей системы и точность результатов. Поэтому случайная последовательность, порождаемая ГСЧ, должна удовлетворять целому ряду критериев.
Осуществляемые проверки бывают двух типов:
- проверки на равномерность распределения;
- проверки на статистическую независимость.
Проверки на равномерность распределения
1) ГСЧ должен выдавать близкие к следующим значения статистических параметров, характерных для равномерного случайного закона:
— математическое ожидание;
— дисперсия;
— среднеквадратичное отклонение.
Частотный тест
Частотный тест позволяет выяснить, сколько чисел попало в интервал (mr – σr; mr + σr), то есть (0.5 – 0.2887; 0.5 + 0.2887) или, в конечном итоге, (0.2113; 0.7887). Так как 0.7887 – 0.2113 = 0.5774, заключаем, что в хорошем ГСЧ в этот интервал должно попадать около 57.7% из всех выпавших случайных чисел (см. рис. 9.9).
Рис. 9.9. Частотная диаграмма идеального ГСЧ
в случае проверки его на частотный тест
Также необходимо учитывать, что количество чисел, попавших в интервал (0; 0.5), должно быть примерно равно количеству чисел, попавших в интервал (0.5; 1).
3) Проверка по критерию «хи-квадрат»
Критерий «хи-квадрат» (χ2-критерий) — это один из самых известных статистических критериев; он является основным методом, используемым в сочетании с другими критериями. Критерий «хи-квадрат» был предложен в 1900 году Карлом Пирсоном. Его замечательная работа рассматривается как фундамент современной математической статистики.
Для нашего случая проверка по критерию «хи-квадрат» позволит узнать, насколько созданный нами реальный ГСЧ близок к эталону ГСЧ, то есть удовлетворяет ли он требованию равномерного распределения или нет.
Частотная диаграмма эталонного ГСЧ представлена на рис. 9.10. Так как закон распределения эталонного ГСЧ равномерный, то (теоретическая) вероятность pi попадания чисел в i-ый интервал (всего этих интервалов k) равна pi = 1/k. И, таким образом, в каждый из k интервалов попадет ровно по pi · N чисел (N — общее количество сгенерированных чисел).
Рис. 9.10. Частотная диаграмма эталонного ГСЧ
Реальный ГСЧ будет выдавать числа, распределенные (причем, не обязательно равномерно!) по k интервалам и в каждый интервал попадет по ni чисел (в сумме n1 + n2 + … + nk = N). Как же нам определить, насколько испытываемый ГСЧ хорош и близок к эталонному? Вполне логично рассмотреть квадраты разностей между полученным количеством чисел ni и «эталонным» pi · N. Сложим их, и в результате получим:
χ2эксп. = (n1 – p1 · N)2 + (n2 – p2 · N)2 + … + (nk – pk · N)2.
Из этой формулы следует, что чем меньше разность в каждом из слагаемых (а значит, и чем меньше значение χ2эксп.), тем сильнее закон распределения случайных чисел, генерируемых реальным ГСЧ, тяготеет к равномерному.
В предыдущем выражении каждому из слагаемых приписывается одинаковый вес (равный 1), что на самом деле может не соответствовать действительности; поэтому для статистики «хи-квадрат» необходимо провести нормировку каждого i-го слагаемого, поделив его на pi · N:
Наконец, запишем полученное выражение более компактно и упростим его:
Мы получили значение критерия «хи-квадрат» для экспериментальных данных.
В табл. 9.2 приведены теоретические значения «хи-квадрат» (χ2теор.), где ν = N – 1 — это число степеней свободы, p — это доверительная вероятность, задаваемая пользователем, который указывает, насколько ГСЧ должен удовлетворять требованиям равномерного распределения, или p — это вероятность того, что экспериментальное значение χ2эксп. будет меньше табулированного (теоретического) χ2теор. или равно ему.
Таблица 9.2. Некоторые процентные точки χ2-распределения | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Приемлемым считают p от 10% до 90%.
Если χ2эксп. много больше χ2теор. (то есть p — велико), то генератор не удовлетворяет требованию равномерного распределения, так как наблюдаемые значения ni слишком далеко уходят от теоретических pi · N и не могут рассматриваться как случайные. Другими словами, устанавливается такой большой доверительный интервал, что ограничения на числа становятся очень нежесткими, требования к числам — слабыми. При этом будет наблюдаться очень большая абсолютная погрешность.
Еще Д. Кнут в своей книге «Искусство программирования» заметил, что иметь χ2эксп. маленьким тоже, в общем-то, нехорошо, хотя это и кажется, на первый взгляд, замечательно с точки зрения равномерности. Действительно, возьмите ряд чисел 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, … — они идеальны с точки зрения равномерности, и χ2эксп. будет практически нулевым, но вряд ли вы их признаете случайными.
Если χ2эксп. много меньше χ2теор. (то есть p — мало), то генератор не удовлетворяет требованию случайного равномерного распределения, так как наблюдаемые значения ni слишком близки к теоретическим pi · N и не могут рассматриваться как случайные.
А вот если χ2эксп. лежит в некотором диапазоне, между двумя значениями χ2теор., которые соответствуют, например, p = 25% и p = 50%, то можно считать, что значения случайных чисел, порождаемые датчиком, вполне являются случайными.
При этом дополнительно надо иметь в виду, что все значения pi · N должны быть достаточно большими, например больше 5 (выяснено эмпирическим путем). Только тогда (при достаточно большой статистической выборке) условия проведения эксперимента можно считать удовлетворительными.
Итак, процедура проверки имеет следующий вид.
- Диапазон от 0 до 1 разбивается на k равных интервалов.
- Запускается ГСЧ N раз (N должно быть велико, например, N/k > 5).
- Определяется количество случайных чисел, попавших в каждый интервал: ni, i = 1, …, k.
- Вычисляется экспериментальное значение χ2эксп. по следующей формуле:
где pi = 1/k — теоретическая вероятность попадания чисел в k-ый интервал.
- Путем сравнения экспериментально полученного значения χ2эксп. с теоретическим χ2теор. (из табл. 22.2) делается вывод о пригодности генератора для использования. Для этого: а) входим в табл. 22.2 (строка = количество экспериментов – 1); б) сравниваем вычисленное χ2эксп. с χ2теор., встречающимися в строке. При этом возможно три случая.
Первый случай: χ2эксп. много больше любого χ2теор. в строке — гипотеза о случайности равномерного генератора не выполняется (разброс чисел слишком велик, чтобы быть случайным).
Второй случай: χ2эксп. много меньше любого χ2теор. в строке — гипотеза о случайности равномерного генератора не выполняется (разброс чисел слишком мал, чтобы быть случайным).
Третий случай: χ2эксп. лежит между значениями χ2теор. двух рядом стоящих столбцов — гипотеза о случайности равномерного генератора выполняется с вероятностью p (то есть в p случаях из 100).
Заметим, что чем ближе получается p к значению 50%, тем лучше.
Дата добавления: 2015-12-08; просмотров: 1184;