ТЕХНОЛОГИИ ВВОДА ДАННЫХ
Способы ввода данных
В соответствии с используемыми техническими средствами различают два способа ввода данных: дигитализацию и векторизацию. Для ручного ввода пространственных данных применяется дигитайзер. Он состоит из планшета (столика) с электронной сеткой, к которому присоединено устройство называемое курсором. Курсор представляет собой подобие графического манипулятора – мыши, имеет визир, нанесенный на прозрачную пластинку, с помощью которого оператор выполняет точное наведение на отдельные элементы карты. На курсоре помещены кнопки, которые позволяют фиксировать начало и конец линии или границы области, число кнопок зависит от уровня сложности дигитайзера. Дигитайзеры бывают разных форматов и обеспечивают разрешение 0,03 мм с общей точностью 0,08 мм на расстоянии 1,5 м. Существуют автоматизированные дигитайзеры, обеспечивающие автоматическое отслеживание линий.
Наибольшее распространение для ввода данных получили сканеры. Они позволяют вводить растровое изображение карты в компьютер. Существуют различные типы сканеров, которые различаются: по способу подачи исходного материала (планшетные и протяжные (барабанного типа); по способу считывания информации (работающие на просвет или на отражение); по радиометрическому разрешению или глубине цвета; по оптическому (или геометрическому) разрешению. Последняя характеристика определяется минимальным размером элемента изображения, который различается сканером.
Процесс цифрования растрового изображения на экране компьютера называют векторизацией. Существует три способа векторизации: ручной, интерактивный и автоматический. При ручной векторизации оператор обводит мышью на изображении каждый объект, при интерактивной - часть операций производится автоматически. Так, например, при векторизации горизонталей достаточно задать начальную точку и направление отслеживания линий, далее векторизатор сам отследит эту линию до тех пор, пока на его пути не встретятся неопределенные ситуации, типа разрыва линии. Возможности интерактивной векторизации прямо связаны с качеством исходного материала и сложностью карты. Автоматическая векторизация предполагает непосредственный перевод из растрового формата в векторный с помощью специальных программ, с последующим редактированием. Оно необходимо, поскольку даже самая изощренная программа может неверно распознать объект, принять например, символ за группу точек, и т.п.
Преобразование исходных данных
Отсканированные исходные карты создавались в определенной картографической проекции и системе координат. При оцифровке эта сложная проекция сводиться в набор пространственных координат. Поэтому необходимо преобразовать карту к ее исходной проекции. Для этого в ГИС вводятся сведения об используемой проекции (обычно ГИС позволяет работать с большим числом проекций) и осуществляется ряд преобразований. Три основных из них, которые часто выполняются одновременно, это перенос, поворот и масштабирование.
Перенос – это просто перемещение всего графического объекта в другое место на координатной плоскости. Он выполняется добавлением определенных величин к координатам Х и У объекта:
Масштабирование тоже очень полезно, так как часто сканируются карты разных масштабов, для этого используют соотношение:
Поворот выполняется с использованием тригонометрических функций:
Все необходимые преобразования могут быть выполнены и использованием этих трех основных графических операций по координатам опорных точек.
Ввод данных дистанционного зондирования
В ГИС используют не первичные материалы ДЗ, получаемые во время съемки, а производные, формируемые в результате их обработки. Данные со спутников подвергаются предварительной цифровой обработке для устранения радиометрических и геометрических искажений, влияния атмосферы и т.д. Для улучшения визуального качества исходных изображений могут применяться процедуры для изменения яркости и контрастности, фильтрации для устранения шумов или подчеркивания контуров и мелких деталей. При использовании аэрофотоснимков следует обращать внимание на искажения, вызываемые углами наклонов снимков и рельефом местности, которые могут быть устранены в процессе трасформирования или ортофототрансформирования.
Вопрос 5. АНАЛИЗ ПРОСТРАНСТВЕННЫХ ДАННЫХ
Задачи пространственного анализа
К средствам пространственного анализа относятся различные процедуры манипулирования пространственными и атрибутивными данными, выполняемые при обработке запросов пользователя. К ним относятся, например, операции наложения графических объектов, средства анализа сетевых структур или выделения объектов по заданным признакам.
Для каждого ГИС-пакета характерен свой набор средств пространственного анализа, обеспечивающий решение специфических задач пользователя, в тоже время можно выделить ряд основных функций, свойственных практически каждому ГИС-пакету. Это, прежде всего, организация выбора и объединения объектов в соответствии с заданными условиями, реализация операций вычислительной геометрии, анализ наложений, построение буферных зон, сетевой анализ.
Основные функции пространственного анализа данных
Выбор объектов по запросу: самой простой формой запроса является получение характеристик объекта указанного курсором на экране и обратная операция, когда изображаются объекты с заданными атрибутами. Более сложные запросы позволяют выбирать объекты по нескольким признакам, например по признаку удаленности одних объектов от других, совпадающие объекты, но расположенные в разных слоях и т. д.
Для выбора данных в соответствии с определенными условиями используются SQL- запросы. Для выполнения запросов разной сложности реализованы возможности использования при составлении запросов математических и статистических функций, а также географических операторов, позволяющих выбирать объекты на основании их взаимного расположения в пространстве (например, находится ли анализируемый объект внутри другого объекта или пересекается с ним).
Обобщение данных может проводиться по равенству значений определенного атрибута, в частности для зонирования территории. Еще один способ группировки – объединение объектов одного тематического слоя в соответствии с их размещением внутри полигональных объектов других тематических слоев.
Геометрические функции: к ним относят расчеты геометрических характеристик объектов или их взаимного положения в пространстве, при этом используются формулы аналитической геометрии на плоскости и в пространстве. Так для площадных объектов вычисляются занимаемые ими площади или периметры границ, для линейных - длины, а также расстояния между объектами и т.д.
Оверлейные операции (топологическое наложение слоев) являются одними из самых распространенных и эффективных средств. В результате наложения двух тематических слоев образуется другой дополнительный слой в виде графической композиции исходных слоев. Учитывая, что анализируемые объекты могут относиться к разным типам (точка, линия, полигон), возможны разные формы анализа: точка на точку, точка на полигон и т.д. Наиболее часто анализируется совмещение полигонов.
Построение буферных зон. Одним из средств анализа близости объектов является построение буферных зон. Буферные зоны – это районы (полигоны), граница которых отстоит на заданном расстоянии от границы исходного объекта. Границы таких зон вычисляются на основе анализа соответствующих атрибутивных характеристик. При этом ширина буферной зоны может быть как постоянной, так и переменной. Например, буферная зона вокруг источника электромагнитного излучения, будет иметь форму круга, а зона загрязнения от дымовой трубы завода с учетом розы ветров будет иметь форму близкую к эллипсу.
Сетевой анализ позволяет пользователю проанализировать пространственные сети связных линейных объектов (дороги, линии электропередач и т. д.). Обычно сетевой анализ служит для задач определения ближайшего, наиболее выгодного пути, определения уровня нагрузки на сеть, определение адреса объекта или маршрута по заданному адресу и другие задачи.
Анализ пространственного распределения объектов
Анализ пространственного распределения объектов. Фактически во многих случаях необходимо знать не только объем пространства, занимаемый объектами, но и расположение объектов в пространстве, которое может характеризоваться количеством объектов в определенной области, например, распределение численности населения. Наиболее распространены методы анализа распределения точечных объектов. Мерой точечного распределения служит плотность. Она определяется как результат деления числа точек на значение площади территории, на которой они расположены. Кроме плотности распределения можно оценить форму распределения. Точечные распределения встречаются в одном из четырёх возможных вариантов: равномерном (если число точек в каждой малой подобласти такое же, как и в любой другой подобласти), регулярном (если точки, разделённые одинаковыми интервалами по всей области, расположены в узлах сетки), случайном, кластерном (если точки собраны в тесные группы).
Точечные распределения могут описываться не только количеством точек в пределах подобластей. Часто анализируются локальные отношения внутри пар точек. Вычисление этого статистического показателя включает определение среднего расстояния до ближайшей соседней точки среди всех возможных пар ближайших точек. Данный метод позволяет оценить меру разреженности точек в распределении.
Распределение линий также оценивается по плотности. Обычно вычисления выполняются для сравнения разных географических областей, например по густоте гидрографической сети. Линии могут также оцениваться по близости и возможным пересечениям. Другими важными характеристиками являются ориентация, направленность и связанность.
Анализ распределения полигонов подобен анализу распределения точек, однако при оценке плотности определяют не количество полигонов на единицу площади, а относительную долю площади, занимаемой полигоном
Дата добавления: 2015-11-24; просмотров: 1192;