Химическое выветривание

Одновременно с физическим выветриванием в областях с промывным типом режима увлажнения происходят и процессы химического изменения с образованием новых минералов. При механической дезинтеграции плотных горных пород образуются макротрещины, что способствует проникновению в них воды и газа и, кроме того, увеличивает реакционную поверхность выветривающихся пород. Это создает условия для активизации химических и биогеохимических реакций. Проникновение воды или степень увлажненности не только определяют преобразование горных пород, но и обусловливают миграцию наиболее подвижных химических компонентов. Это находит особенно яркое отражение во влажных тропических зонах, где сочетаются высокая увлажненность, высокотермические условия и богатая лесная растительность. Последняя обладает огромной биомассой и значительным спадом. Эта масса отмирающего органического вещества преобразуется, перерабатывается микроорганизмами, в результате в большом количестве возникают агрессивные органические кислоты (растворы). Высокая концентрация ионов водорода в кислых растворах способствует наиболее интенсивному химическому преобразованию горных пород, извлечению из кристаллических решеток минералов катионов и вовлечению их в миграцию.

Особая роль биосферы в геологических процессах была отмечена в работах крупнейшего русского ученого В. И. Вернадского. Он ввел понятие о "живом веществе" как перманентном геологическом деятеле, как аккумуляторе и перераспределителе Солнечной энергии. Он писал: "Захватывая энергию Солнца, живое вещество создает химические соединения, при распадении которых эта энергия освобождается в форме, могущей производить химическую работу"; "живое вещество есть форма активизированной материи и эта энергия тем больше, чем больше масса живого вещества"6 . К процессам химического выветривания относятся окисление, гидратация, растворение и гидролиз.

Окисление особенно интенсивно протекает в минералах, содержащих железо. В качестве примера можно привести окисление магнетита, который переходит в более устойчивую форму – гематит (Fe204 203). Такие преобразования констатированы в древней коре выветривания Курской магнитной аномалии (КМА), где разрабатываются богатые гематитовые руды. Интенсивному окислению (часто совместно с гидратацией) подвергаются сульфиды железа. Так, например, можно представить выветривание пирита

 

FeS2 + mO2 + nН2О FeS04 2(SО4) 2O3.2О (Лимонит (бурый железняк)

 

На некоторых месторождениях сульфидных и других железных руд наблюдаются "бурожелезняковые шляпы", состоящие из окисленных и гидратированных продуктов выветривания. Воздух и вода в ионизированной форме разрушают железистые силикаты и превращают двухвалентное железо в трехвалентное.

Гидратация. Под воздействием воды происходит гидратация минералов, т.е. закрепление молекул воды на поверхности отдельных участков кристаллической структуры минерала. Примером гидратации является переход ангидрита в гипс: ангидрит-CaSO4+2H2O CaSO4.2H20 – гипс. Гидратированной разновидностью является также гидрогётит: гётит - FeOOH + nH2O FeOH.nH2O - гидрогётит.

Процесс гидратации наблюдается и в более сложных минералах - силикатах.

Растворение. Многие соединения характеризуются определенной степенью растворимости. Их растворение происходит под действием воды, стекающей по поверхности горных пород и просачивающейся через трещины и поры в глубину. Ускорению процессов растворения способствуют высокая концентрация водородных ионов и содержание в воде О2, СО2 и органических кислот. Из химических соединений наилучшей растворимостью обладают хлориды – галит (поваренная соль), сильвин и др. На втором месте – сульфаты – ангидрит и гипс. На третьем месте карбонаты – известняки и доломиты. В процессе растворения указанных пород в ряде мест происходит образование различных карстовых форм на поверхности и в глубине (см. гл. 7).

Гидролиз. При выветривании силикатов и алюмосиликатов важное значение имеет гидролиз, при котором структура кристаллических минералов разрушается благодаря действию воды и растворенных в ней ионов и заменяется новой существенно отличной от первоначальной и присущей вновь образованным гипергенным минералам. В этом процессе происходят: 1) каркасная структура полевых шпатов превращается в слоевую, свойственную вновь образованным глинистым гипергенным минералам; 2) вынос из кристаллической решетки полевых шпатов раствори-мых соединений сильных оснований (К, Na, Ca), которые, взаимодействуя с СО2, образуют истинные растворы бикарбонатов и карбонатов (К2СО3, Na2СО3, СаСО3). В условиях промывного режима карбонаты и бикарбонаты выносятся за пределы места их образования. В условиях же сухого климата они остаются на месте, образуют местами пленки различной толщины, или выпадают на небольшой глубине от поверхности (происходит карбонатизация); 3) частичный вынос кремнезема; 4) присоединение гидроксильных ионов.

Процесс гидролиза протекает стадийно с последовательным возникновением нескольких минералов. Так, при гипергенном преобразовании полевых шпатов возникают гидрослюды, которые затем превращаются в минералы группы каолинита или галуазита

 

K[AlSi3O8] (К,Н3О)А12(ОН)2[А1Si3О10]. Н2O Аl4(ОН)8[Si4O10]

Ортоклаз гидрослюда каолинит

 

В умеренных климатических зонах каолинит достаточно устойчив и в результате накопления его в процессах выветривания образуются месторождения каолина. Но в условиях влажного тропического климата может происходить дальнейшее разложение каолинита до свободных окислов и гидроокислов

Al4(OH)8[Si4O10] Al(OH)3+SiO2. nH2O

 

Таким образом, формируются окислы и гидроокислы алюминия, являющиеся составной частью алюминиевой руды - бокситов.

При выветривании основных пород и особенно вулканических туфов среди образующихся глинистых гипергенных минералов наряду с гидрослюдами широко развиты монтмориллониты (Al2Mg3) [Si4O10](OH)2*nH2O и входящий в эту группу высокоглиноземистый минерал бейделлит А12(ОН)2[А1Si3О10]nН2O. При выветривании ультраосновных пород (ультрабазитов) образуются нонтрониты, или железистые монтмориллониты (FeAl2)[Si4O10](OH)2.2О. В условиях значительного атмосферного увлажнения происходит разрушение нонтронита, при этом образуются окислы и гидроокислы железа (явление обохривания нонтронитов) и алюминия.

 

Кора выветривания

В результате единого и сложного взаимосвязанного физического, химического и хемобиогенного процессов разрушения горных пород образуются различные продукты выветривания. Остаточные или несмещенные продукты выветривания, остающиеся на месте разрушения материнских (коренных) горных пород, представляют собой один из важных генетических типов континентальных образований и называют элювием. Кора выветривания объединяет всю совокупность различных элювиальных образований. Такая остаточная кора выветривания называется автоморфной (греч. "аутос" – сам). Помимо первичной автоморфной коры выветривания ряд исследователей (П. И. Гинзбург, В. А. Ковда, В. В. Добровольский и др.) выделяют вторичную, или гидроморфную, кору выветривания, образующуюся в результате выноса почвенными и грунтовыми водами химических элементов в виде истинных и коллоидных растворов в ходе формирования первичной автоморфной коры. Эти элементы, выносимые растворами, выпадают в виде минералов в пониженных элементах рельефа. Такую взаимосвязь автоморфной и гидроморфной кор выветривания называют геохимической сопряженностью, что имеет важное значение. Так, например, с автоморфными латеритными корами выветривания с гидроокислами алюминия сочетаются местами, расположенные по соседству и орографически ниже залежи бокситов осадочного происхождения. Главное внимание в этой главе уделяется формированию первичной автоморфной коры выветривания.

Рис. 4.2. Схема полного профиля коры выветривания в тропической лесной области.

В истории геологического развития земной коры неоднократно возникали благоприятные условия для образования мощных автоморфных кор выветривания, к числу которых относятся: сочетания высоких температур и влажности, относительно выровненный рельеф, обилие растительности и продолжительность периода выветривания. При достаточно длительном времени выветривания и соответствующих условиях образуются хорошо выраженные зоны коры выветривания, имеющие свои текстурно-структурные особенности и сложенные минералами, отражающими последовательные стадии развития. Значительная мощность и наиболее полный профиль коры выветривания формировался в тропической лесной области, где выделяются следующие зоны: дезинтегрированная гидрослюдисто-монтмориллонитово-бейделлитовая каолинитовая гиббсит-гематит-гётитовая. Благодаря присутствию окислов и гидроокислов Аl и Fe элювий верхней части коры выветривания в сухом состоянии напоминает обожженный кирпич, часто образующий панцири и окрашенный в красный цвет. Поэтому такие коры выветривания называются латеритными (лат. "латер" – кирпич). Приведенные данные показывают, что состав полного профиля автоморфной коры выветривания изменяется снизу вверх от свежей исходной породы до продуктов наиболее глубокого гипергенного преобразования (рис. 4.2).

Б. Б. Полыновым и П. И. Гинзбургом была намечена схема последовательности, или стадийности, процесса выветривания магматических пород. Были выделены четыре стадии: 1) обломочная, в которой гипергенное преобразование сводится к дроблению, механическому разрушению породы до обломочного материала (обломочный элювий); 2)сиаллитная7, когда происходит извлечение щелочных и щелочноземельных элементов, главным образом Са и Na, которые образуют пленки и конкреции кальцита. Поэтому эта стадия называется обызвесткованной; 3) кислая сиаллитная, в которой происходят глубокие изменения кристаллохимической структуры силикатов с образованием глинистых минералов (монтмориллонита, нонтронита, каолинита); 4) аллитная, когда кора выветривания обогащается окислами железа, а при наличии определенного состава исходных пород - окислами алюминия.

Изложенное представление понимается исследователями как идеализированная схема, иллюстрирующая общую направленность процесса выветривания. Конкретные климатические условия и состав горных пород, существовавшие в отдельные этапы геологической истории, могли задерживать или, наоборот, ускорять этот процесс, в результате чего формировались сокращенные и неполные профили вплоть до образования однозонального профиля коры выветривания, как, например, в пустынях и полупустынях элювий состоит преимущественно из различных обломков, щебня, дресвы, образующихся при физическом выветривании, местами с карбонатными пленками. Аналогичный обломочный профиль характерен для тундры. В отличие от указанных наблюдаются сокращенные и неполные профили в условиях особо высоких температур и интенсивного водообмена, где в ряде случаев выпадают промежуточные зоны, местами вплоть до образования однозонального профиля, состоящего из свободных окислов и гидроокислов железа и алюминия, располагающихся на неизмененных породах.

Рис. 4.3. Избирательный характер выветривания. Фигуры выветривания на склоне г. Демерджи, Крым (рис. Н. В. Короновского)

Кроме того, и в полном профиле коры выветривания вертикальная зональность может быть объяснена не только стадийностью процесса, но и возможностью различия степени химического разложения первичных минералов в верхних и более глубоких зонах профиля. Ведь именно в верхней (приповерхностной) зоне расходуется значительная часть химически и биохимически активных веществ, и происходят наиболее интенсивные химические реакции и преобразования первичных минералов в глинистые и даже в свободные окислы и гидроокислы железа и алюминия. Глубже поступают уже обедненные, менее активные растворы, вследствие чего процессы преобразования минералов там замедляются и образуются промежуточные минералы – гидрослюды, монтмориллонит и др. Следует также учитывать избирательный характер выветривания. Не все породы и не все части одной породы выветриваются равномерно. В трещиноватых участках пород выветривание происходит значительно легче, вдоль трещин образуются карманы продуктов выветривания. Кроме того, одни компоненты породы растворяются (или гидролизируются) легче, другие трудней. В слоистых, различных по составу породах также в ряде случаев наблюдается избирательное выветривание. Одни слои более подвержены выветриванию, другие менее, в результате местами возникают останцы более устойчивых слоев (в виде столбов, башен) на фоне продуктов выветривания разрушенных слоев (рис. 4.3).

Среди кор выветривания выделено два основных морфогенетических типа: площадной и линейный. Площадные коры выветривания развиваются в виде покрова или плаща, занимают местами обширные площади до десятков и сотен квадратных километров, представляющие различные выровненные тектонически спокойные поверхности рельефа. Линейные коры выветривания имеют линейное распространение в плане и приурочены к зонам повышенной трещиноватости, к разломам и контактам различных по составу и генезису горных пород. В этих условиях происходит более свободное проникновение воды и связанных с ней химически активных компонентов, что вызывает интенсивный процесс химического выветривания.

Кроме того, существует представление, развиваемое В. Н. Разумовой, что в формировании линейных кор выветривания участвуют глубинные гидротермально-вадозные растворы, с которыми связаны миграция химических элементов и, возможно, метасоматическое замещение одних минералов другими. Такой процесс может быть приурочен к разломам и зонам повышенной трещиноватости, где наблюдается и наибольшая мощность коры в виде глубоко уходящих карманов. Менее обоснованно влияние гидротермальных растворов на формирование широко распространенных площадных кор выветривания на поверхностях выравнивания.

Особенно широко развиты древние коры выветривания мезозойского и мезозойско-кайнозойского времени в Казахстане, на Алтае, в ряде районов Сибири, на Урале и в других местах. Классическим развитием этих кор является Южный и Средний Урал, где они характеризуются большой мощностью и хорошо изучены многими исследователями (И.И. Гинзбургом, В.П. Петровым, Н.П. Херасковым, В. Н. Разумовой и др.). Полный профиль выветривания на серпентинитах Урала отмечается определенной зональностью. В нем неизмененные серпентиниты сменяются выщелочен-ными, далее монтмориллонитизированными и нонтронитизированными и, наконец, охрами по серпентинитам. В пределах развития габбро и долеритов также намечается полный профиль коры выветривания – от дезинтегрированных пород через промежуточные минералы к латеритным бокситам и охрам. По данным В.П. Петрова, строение площадной древней коры выветривания на гранитах Урала отличается достаточно четко выраженной зональностью: дресвянистая зона гидрослюдистая каолинитовая, суммарной мощностью около 100 м. Здесь же выражена линейная кора выветривания, соответствующая контакту гранита со сланцами и характеризующаяся мощностью около 200 м и отсутствием дресвянистой зоны.

По данным С.Л. Шварцева, зона окисленных руд в Гвинее образуется на хорошо дренируемых возвышенных участках и не всегда сопровождается образованием глинистых минералов. Латеризацию пород он объясняет не только конечными стадиями выветривания (когда образуются окислы и гидроокислы), но и привносом в верхние горизонты коры Fe и А1 путем выщелачивания и миграции их из покрывающих почв.

Своеобразный тип линейной коры выветривания описан В. П. Егоровым и В. М. Новиковым в пределах Ново-Бурановского рудного месторождения Кемпирсайского массива Урала. Здесь в Контактной зоне основных пород – габбро и ультраосновных – серпентинитов выражен полный профиль коры выветривания с латеритным бокситом. В профиле выветривания габброидов выделяются четыре минерало-геохимические зоны (снизу вверх): 1) механической дезинтеграции; 2) выщелачивания (гидрохлорит-монтмориллонитовая); 3) каолинито-охристая и 4) гиббсит-каолинито-охристая с латеритным бокситом. Залежи бокситов имеют гнездообразную форму. В центральной части габброидного тела завершает кору выветривания каолинито-охристая зона. Здесь же в профиле коры выветривания серпентинитов выделяются следующие зоны: 1) дезинтегрированных серпентинитов; 2) керолитовых; 3) никельсодержащих нонтронитов; 4) охр. Местами же непосредственно на серпентинитах располагаются никельсодержащие нонтрониты, переходящие в охры.

В работах Н.А. Лисицыной приведены интересные данные о современно-четвертичных корах выветривания южного полушария. Особенностью всех описанных ею типов кор является отсутствие дезинтегрированной зоны и непосредственный переход базальтов в различные глинистые образования и даже в охристую латеритную зону. Так, например, в Индонезийском типе на базальтах располагаются сильно выветрелые гиббсит-каолинитовые образования мощностью до 20 м, выше которых гиббсит-гематит-гётитовые образования конкреционной структуры мощностью 0,3-5,5 м. Наиболее интенсивное разложение базальтов отмечено в Гвинейском типе, где кора состоит из маломощного (0,5 м) гиббсит-каолинитового горизонта, а выше из гиббсит-гематит-гётитовых образований мощностью около 12 м. Близкие данные получены С.П. Прокофьевым по Западной Гвинее в пределах Фута-Мандингского свода. При этом указывается на возможность проявления во времени двух циклов гипергенеза: 1) позднемеловой - миоценовый и 2) плиоцен-четвертичный.

Рассмотренные примеры показывают, что общий процесс формирования кор выветривания весьма сложен, зависит от сочетания многих факторов и представляет собой несколько взаимосвязанных явлений: 1) разрушение и химическое разложение горных пород с образованием продуктов выветривания; 2) частичный вынос и перераспределение продуктов выветривания; 3) синтез новых минералов в результате взаимодействия продуктов выветривания в ходе их миграции; 4) метасоматическое (греч. "мета" - после, "сома" - тело) замещение минералов материнских пород. В направленности общего процесса выветривания большая роль принадлежит миграционной способности химических элементов.








Дата добавления: 2015-10-26; просмотров: 2718;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.