ВЕЩЕСТВЕННЫЙ СОСТАВ ЗЕМНОЙ КОРЫ

Земную кору – верхнюю твердую оболочку Земли слагают различные генетические типы горных пород (магматические, осадочные и метаморфические), состоящие из определенного сочетания минералов, в состав которых входят различные химические элементы. Изучая такую иерархию - химические элементы -> минералы -> горные породы, можно судить о строении земной коры в различных структурных зонах. Ниже рассматриваются все указанные части вещественного состава земной коры.

 

Химический состав земной коры

Химические изменения в земной коре определяются преимущественно геохимической историей главных породообразующих элементов, содержание которых составляет свыше 1%. Вычисления среднего химического состава земной коры проводились многими исследователями как за рубежом (Ф. Кларк, Г. С. Вашингтон, В. М. Гольдшмидт, Ф.Тейлор, В. Мейсон и др.), так и в Советском Союзе (В.И.Вернадский, А. Е. Ферсман, А. П. Виноградов, А. А. Ярошевский и др.).

Сопоставляя приведенные данные, видно, что земная кора больше чем на 98% сложена О, Si, Al, Fe, Mg, Ca, Na, К, при этом свыше 80% составляют кислород, кремний и алюминий, в отличие от среднего состава Земли, где содержание их резко уменьшается. Особенно высоко содержание кислорода, поэтому В. М. Гольдшмидт называет земную кору оксисферой, или кислородной оболочкой Земли.

 

Минералы

Минералами называются природные химические соединения или отдельные химические элементы, возникшие в результате физико-химических процессов, происходящих в Земле. В земной коре минералы находятся преимущественно в кристаллическом состоянии, и лишь незначительная часть - в аморфном. Свойства кристаллических веществ обусловливаются как их составом, так и внутренним строением, т.е. кристаллической структурой. В кристаллических решетках расстояния между элементарными частицами и характер связей между ними в разных направлениях неодинаковы (рис. 2.1), что обусловливает и различие свойств. Такое явление называется анизотропией или неравносвойственностью кристаллического вещества. Анизотропия кристаллических веществ проявляется во многих их особенностях. Например, в способности кристаллического вещества самоограняться, т.е. образовывать многогранники – кристаллы, форма кристаллов разнообразна и зависит, прежде всего, от внутреннего строения данного соединения.

Проявление анизотропии можно рассмотреть на примере минерала графита, внутренняя структура которого приведена на рис. 2.1,б. Расстояние между атомами углерода в пределах плоских слоев решетки составляет 0,14 нм (1,42 А), между слоями оно больше - 0,33 нм (3,39 А). Это объясняет способность графита легко расщепляться (весьма совершенная спайность –см. ниже) на тонкие листочки, параллельные слоям решетки, и с трудом ломаться по неровным поверхностям в других направлениях, где расстояния между частицами и силы сцепления между ними больше.

Рис. 2.1. Кристаллические решетки: а - алмаза (С), б - графита (С)

В аморфных веществах закономерность в расположении частиц отсутствует. Свойства их зависят только от состава и во всех направлениях статистически одинаковы, т.е. аморфные вещества изотропны или равносвойственны. Прежде всего, это выражается в том, что аморфные вещества не образуют кристаллов и не обладают спайностью.

В различных физико-химических условиях вещества одинакового химического состава могут приобретать разное внутреннее строение, а следовательно, и разные физические свойства и создавать таким образом разные минералы. Это явление называется полиморфизмом (греч. "поли" - много). В качестве яркого примера полиморфизма можно назвать две модификации углерода (С): упомянутый минерал графит и минерал алмаз. Внутренняя структура алмаза резко отличается от строения графита (рис. 2.1,а). В структуре алмаза сцепления между атомами углерода однотипны и прочны. Отсюда вытекают и свойства алмаза (С), резко отличные от свойств графита (С): низкие твердость-1 и плотность-2,1–2,3 графита и высокие-алмаза, соответственно 10 и 3,5 и др.

Важным свойством кристаллических веществ, обусловленным внутренним строением, является также его однородность, выражающаяся в том, что любые части кристаллического вещества в одинаковых направлениях обладают одинаковыми свойствами, т.е. если кристалл графита в одном направлении имеет весьма совершенную спайность, то и любой его обломок в том же направлении обладает этим свойством.

Формы нахождения минералов в природе разнообразны и зависят главным образом от условий образования. Это либо отдельные кристаллы или их закономерные сростки (двойники), либо четко обособленные минеральные скопления, либо, чаще, скопления минеральных зерен - минеральные агрегаты.

Отдельные изолированные кристаллы и кристаллические двойники, т.е. закономерные сростки кристаллов, возникают в благоприятных для роста условиях. Форма кристаллов разнообразна и отражает как состав и внутреннюю структуру минерала, так и условия образования. Двойниками называются закономерные сростки кристаллов. Законы двойникования разнообразны, что приводит к формированию морфологически различных двойников.

Среди обособленных минеральных скоплений наиболее часто встречают друзы, представляющие скопления кристаллов, приросших к стенкам пещер или трещин. Секреции - результат постепенного заполнения ограниченных пустот минеральным веществом, отлагающимся на их стенках. Они имеют обычно концентрическое строение, отражающее стадийность формирования. Мелкие секреции называются миндалинами, крупные - жеодами. Конкреции - более или менее округлые образования, возникшие путем осаждения минерального вещества вокруг какого-либо центра кристаллизации. С этим часто связано концентрическое или радиально-лучистое строение конкреций. Мелкие округлые образования обычно концентрического строения называются оолитами. Их возникновение связано с выпадением минерального вещества в подвижной водной среде. Натечные образования, осложняющие поверхности пустот, возникают при кристаллизации минерального вещества из просачивающихся подземных вод. Натеки, свисающие со сводов пустот, называются сталактитами, растущие вверх со дна пещер - сталагмитами. На поверхности трещин могут развиваться плоские минеральные пленки, имеющие разное строение.

Наиболее широко развиты минеральные агрегаты кристаллического, аморфного или скрытокристаллического строения, слагающие толщи пород. Они образуются при более или менее одновременном выпадении из растворов или расплавов множества минеральных частиц. В кристаллических агрегатах минералы находятся в кристаллическом состоянии, но зерна их имеют неправильную форму. Величина зерен зависит от условий кристаллизации и изменяется от крупных до землистых. В жилах кристаллические агрегаты часто имеют массивное (сливное) строение, при котором отдельные зерна на глаз не различимы. Аморфные агрегаты представляют собой однородные плотные или землистые массы, обладающие матовым, восковым или слабожирным блеском. Скрытокристаллические агрегаты внешне напоминают аморфные и отличаются от них только микроскопически.

Они представляют собой коллоидные системы, состоящие из тонкодисперсных кристаллических частиц и заключающей их среды.

Встречаются минеральные образования, состав которых не соответствует форме, которую они слагают,- это так называемые псевдоморфозы (греч. "псевдо" - ложный). Они возникают при химических изменениях ранее существующих минералов или заполнении пустот, образовавшихся при выщелачивании каких-либо минеральных или органических включений. К первым относятся, например, часто встречающиеся псевдоморфозы лимонита по пириту, когда кубические кристаллы пирита (FeS2) превращаются в скрытокристаллический лимонит, ко вторым - псевдоморфозы опала по древесине и др.

Физические свойства минералов. Постоянство химического состава и внутренней структуры минералов обусловливает их свойства. На этом основаны различные методы минералогических исследований и определений минералов. Большинство из них требует специального оборудования и возможно только в стационарных условиях. Однако каждый исследователь, имеющий дело с минералами и горными породами, должен владеть методом их полевого определения, основанного на изучении внешних, видимых невооруженным глазом (макроскопически) свойств.

Морфология кристаллов минералов может явиться важным диагностическим признаком, хотя следует отметить, что в природе один и тот же минерал в разных условиях образует кристаллы различной формы, а разные минералы могут давать одинаковые кристаллы. Отметим лишь некоторые данные кристаллографии, используемые ниже при характеристике минералов. Все разнообразие форм кристаллов минералов удается разделить на шесть крупных подразделений, называемых сингониями. Не останавливаясь на специальных вопросах, рассматриваемых в курсах кристаллографии, отметим только, что сингонии отражают степень симметричности кристаллов. Выделяют сингонии: кубическую, объединяющую наиболее симметричные кристаллы, которые имеют несколько осей симметрии высшего порядка; гексагональную (с тригональной подсингонией), кристаллы которой имеют одну ось шестого или третьего порядка; тетрагональную - кристаллы имеют одну ось четвертого порядка. Наименее симметричные кристаллы принадлежат к ромбической, моноклинальной или триклинной сингониям, в кристаллах которых отсутствуют оси симметрии высшего порядка.

Оптические свойства минералов. Цвет - важный признак минералов, который, однако, можно использовать лишь в совокупности с другими свойствами. Окраска минерала определяется его химическим составом (основным и примесями), структурой, механическими примесями и неоднородностями. В связи с этим один и тот же минерал может иметь различную окраску, а разные минералы бывают окрашены в одинаковый цвет. Цвет минерала может осложняться интерференцией света в его поверхностных частях, что вызывает, например, появление серых, синих и зеленых переливов у Лабрадора (явление иризации). Описывая минерал, следует стремиться к возможно более точному определению цвета. Если в одном куске минерала цвет изменяется, необходимо указать характер смены окраски.

Для непрозрачных и сильно окрашенных слабопрозрачных минералов важным диагностическим признаком является цвет минерала в порошке, или цвет черты. Он может быть и таким же, как в куске (см. магнетит), но может от него отличаться (см. пирит). У прозрачных и большинства просвечивающих минералов порошок белый или слабо окрашенный. Для определения цвета порошка минералом проводят по шероховатой поверхности фарфоровой пластинки, называемой бисквитом, на которой остается черта, соответствующая цвету порошка; если твердость минерала больше твердости бисквита, на последнем остается царапина.

Прозрачность, характеризующая способность минерала пропускать свет, зависит от его кристаллической структуры, а также от характера и однородности минерального скопления. По этому признаку выделяют минералы: непрозрачные, не пропускающие световых лучей; прозрачные, пропускающие свет подобно обычному стеклу; полупрозрачные или просвечивающие, пропускающие свет подобно матовому стеклу; просвечивающие лишь в тонкой пластинке. Агрегаты многих минералов на глаз кажутся непрозрачными.

Блеск зависит от показателя преломления минерала и от характера отражающей поверхности. Выделяют минералы с металлическим блеском, к которым относятся непрозрачные минералы, имеющие темноокрашенную черту. Блеск, напоминающий блеск потускневшего металла, называют металловидным (полуметаллическим). Значительно более обширную группу составляют минералы с неметаллическим блеском, к разновидностям которого относятся: алмазный, стеклянный, жирный, перламутровый, шелковистый, восковой и, в случае отсутствия блеска, матовый.

Механические свойства минералов. Излом определяется поверхностью, по которой раскалывается минерал. Она может напоминать ребристую поверхность раковины - раковистый излом, может иметь неопределенно-неровный характер - неровный излом. В мелкозернистых агрегатах определить излом отдельных минеральных зерен не удается; в этом случае полезно описать излом агрегата - зернистый, занозистый или игольчатый, землистый.

Спайность – способность кристаллических минералов раскалываться по ровным поверхностям – плоскостям спайности, соответствующим направлениям наименьшего сцепления частиц в кристаллической структуре минерала (рис. 2.1,б). В зависимости от того, насколько легко образуются сколы по плоскостям и насколько они выдержаны, выделяют различные степени спайности: весьма совершенная - минерал легко расщепляется на тонкие пластинки, совершенная - минерал при ударе раскалывается по плоскостям спайности, средняя спайность - при ударе минерал раскалывается как по плоскостям, так и по неровному излому; несовершенная спайность - на фоне неровного излома лишь изредка образуются сколы по плоскостям; весьма несовершенная спайность - всегда образуется неровный или раковистый излом. Макроскопически две последние степени различить, обычно не удается. Спайность может быть выражена в одном, двух, трех, реже четырех и шести направлениях. Если спайность выражена в нескольких направлениях, необходимо определить взаимное расположение плоскостей спайности, оценивая приблизительно угол, образуемый ими.

Твердость – способность противостоять внешнему механическому воздействию - важное свойство минералов. Обычно в минералогии определяется относительная твердость путем царапанья эталонными минералами поверхности исследуемого минерала: более твердый минерал оставляет на менее твердом царапину. В принятую "шкалу твердости" (табл. 2.2) входят десять минералов, расположенных в порядке увеличения твердости: первый минерал - тальк обладает самой низкой твердостью, принятой за единицу (1), последний- алмаз имеет самую высокую твердость, принятую за десять (10). Для определения твердости минералов можно пользоваться некоторыми распространенными предметами, твердость которых близка к твердости минералов - эталонов. Так, твердостью 1 обладает графит мягкого карандаша; около 2–2,5 - ноготь; 4 - железный гвоздь; 5 - стекло; 5,5–6 - стальной нож, игла. Более твердые минералы встречаются редко.

Для каждого минерала характерна более или менее постоянная плотность. Для минералов, в состав которых входят тяжелые металлы, высокая плотность является существенным диагностическим признаком.

При определении минералов надо фиксировать все перечисленные выше свойства, так как только их комплекс может дать правильный результат. Некоторым минералам присущи особые свойства, облегчающие их определение (см. ниже).

Классификация минералов и их описание. Количество известных в настоящее время минералов превышает 2000. Их можно группировать по разным признакам. В основе принятой в настоящее время классификации минералов лежат химический состав и структура. Большое внимание уделяется также генезису (греч. "генезис" - происхождение), что позволяет познавать закономерности распространения минералов в земной коре. Роль различных минералов в строении последней неодинакова: одни встречаются редко и представляют собой лишь незначительные и необязательные включения в горные породы; другие слагают основную массу пород, определяя их свойства; третьи, образующие локальные скопления или рассеянные в породах, представляют интерес как полезные ископаемые. Ниже рассматриваются лишь наиболее широко распространенные минералы, принадлежащие к классам самородных элементов, сульфидов, галоидных соединений, оксидов и гидроксидов, карбонатов, сульфатов, фосфатов и силикатов.

Классы самородных элементов и сульфидов. Минералы этих классов не относятся к породообразующим, но многие из них являются ценными полезными ископаемыми.

Из наиболее распространенных минералов первого класса можно назвать серу S, возникающую в процессе возгонки паров при вулканических извержениях, а также в поверхностных условиях при химических изменениях минералов классов сульфидов и сульфатов и биогенным путем. Используется в химической промышленности для получения серной кислоты, в сельском хозяйстве и в ряде других отраслей.

Графит С связан преимущественно с процессами метаморфизма. Широко применяется в металлургии, для производства электродов и др. К этому же классу относятся такие ценные минералы, как алмаз, золото, платина и др.

К классу сульфидов принадлежат многочисленные минералы - руды металлов.

Галенит, или свинцовый блеск PbS, встречается в виде кристаллических агрегатов, реже – отдельных кристаллов и их сростков. Сингония кубическая. Цвет свинцово-серый; черта серовато-черная, блестящая; блеск металлический; непрозрачный; спайность совершенная в трех взаимно перпендикулярных направлениях, т.е. параллельно граням куба; твердость 2,5; плотность 7,5.

Сфалерит, или цинковая обманка ZnS, встречается в виде кристаллических агрегатов, реже сростков кристаллов кубической сингонии. Цвет бурый, редко бесцветный, примесями железа бывает окрашен в черный; черта желтая, бурая; блеск алмазный, металловидный; просвечивает; спайность совершенная в шести направлениях параллельно граням ромбического додекаэдра; твердость 3,5–4; плотность около 4.

Месторождения галенита и сфалерита, руд свинца и цинка в РФ многочисленны, например, на Северном Кавказе, в Средней Азии, Забайкалье.

Одним из наиболее распространенных минералов класса сульфидов является пирит FeS2. Образует агрегаты разной зернистости, часто встречаются вкрапленные в породы кубические кристаллы, несущие на гранях штриховку. Цвет золотисто-желтый; черта черная, зеленовато-черная; блеск металлический; излом неровный; спайность весьма несовершенная; твердость 6–6,5; плотность около 5. Используется для изготовления серной кислоты.

Происхождение минералов класса сульфидов связано главным образом с горячеводными растворами (гидротермальными). Они часто встречаются в кварцевых жилах вместе со многими минералами класса самородных элементов.

Класс галоидных соединений. К нему относятся минералы, представляющие соли фтористо-, бромисто-, хлористо-, йодистоводородных кислот. Наиболее распространенными минералами этого класса являются хлориды, образующиеся главным образом при испарении вод поверхностных бассейнов. Известны выделения хлоридов и из вулканических газов.

Галит NaCI – образует плотные кристаллические агрегаты, реже кристаллы кубической формы. Чистый галит бесцветный или белый, чаще окрашен в различные светлые цвета; блеск стеклянный; прозрачный или просвечивает; спайность совершенная в трех взаимно перпендикулярных направлениях, т.е. параллельно граням куба; твердость 2; плотность около 2. Гигроскопичен, соленый на вкус. Используется в пищевой промышленности, в химической для получения хлора, натрия и их производных. Основные месторождения РФ находятся на Украине, на Урале, в Донбассе и во многих других местах.

Сильвин КС – близок по происхождению и по физическим свойствам к галиту, с которым часто образует единые агрегаты. Отличительный признак - горько-соленый вкус. Применяется в основном как сырье для калийных удобрений, в химической промышленности.

Фториды связаны преимущественно с гидротермальными, а также с магматическими и пневматолитовыми процессами (греч. "пневма" - дух, газ). В экзогенных условиях образуются редко. К ним относится флюорит, или плавиковый шпат - CaF2, встречающийся в виде зернистых скоплений, отдельных кристаллов и их сростков. Сингония кубическая. Цвет разнообразный, часто меняющийся в одном кристалле от бесцветного к желтому, зеленому, голубому, фиолетовому; блеск стеклянный; спайность совершенная в четырех направлениях параллельно граням октаэдра; твердость 4; плотность 3,18. Используется в металлургической, химической, керамической промышленности, прозрачные разновидности- в оптике. Основные месторождения РФ в Забайкалье и в Средней Азии.

Класс оксидов и гидроксидов. По количеству входящих в него минералов занимает одно из первых мест: на его долю приходится около 17% всей массы земной коры. Из них около 12,5% составляют оксиды кремния и 3,9% – оксиды железа. Минералы этого класса образуются как в эндогенных, так и в экзогенных условиях.

Рис.2.2. Кремнекислородный тетраэдр [Si04]

Кварц Si02 – широко распространенный в земной коре породообразующий минерал. Основой его структуры является кремнекислородный тетраэдр [ SO4l4-, в вершинах которого располагаются ионы кислорода, а в центре - ион кремния (рис. 2.2). Соединение тетраэдров осуществля-ется через вершины так, что каждая вершина одного тетраэдра служит вершиной смежного с ним тетраэдра, образуя структуру прочного трехмерного каркаса, аналогичную каркасной структуре силикатов (см. ниже). Кварц встречается в виде зернистых агрегатов, плотных масс, зерен в породах, в пустотах образует кристаллы и их сростки. Кристаллы имеют сложную форму, основой которой является шестигранная призма, оканчивающаяся ромбоэдрами. Грани призмы часто несут тонкую поперечную штриховку. Сингония гексагональная (подсингония тригональная). Цвет разнообразный - бесцветный, белый, серый, встречаются окрашенные разности. Окраска лежит в основе выделения разновидностей кварца: горный хрусталь - бесцветные прозрачные кристаллы; дымчатый кварц - серо-дымчатые, бурые; аметист - фиолетовые кристаллы; морион - черные и др.; просвечивает, реже прозрачен; блеск на гранях стеклянный, на изломе - жирный; излом раковистый или неровный; спайность весьма несовершенная; твердость 7; плотность 2,65.

Кварц выделяется при кристаллизации магмы, выпадает из горячих растворов и паров, возникает в процессе метаморфизма. В экзогенных условиях образуется редко. Химически устойчив в любых условиях.

Халцедон SiO2 - скрытокристаллический минерал, образующий плотные, часто натечные массы. Цвет различный, часто желто-бурых тонов. Окрашенные разновидности имеют особые названия: красного или оранжевого цвета – сердолик, с окраской, располагающейся полосами, – агат и др. Блеск восковой, слабожирный, матовый; просвечивает обычно только по краю; излом раковистый; твердость 7, Связан с гидротермальными процессами, сопровождающими вулканическую деятельность, возникает в экзогенных условиях. Кварц и халцедон используются в стекольной, химической промышленностях, в строительстве, горный хрусталь (пьезокварц) - в оптике и радиотехнике. Красиво окрашенные разновидности применяются в ювелирном деле. Месторождения многочисленны.

Опал SiO2.nH2O – аморфный минерал. Содержание воды колеблется обычно в пределах от 1 до 5%, редко увеличиваясь до 34%. Образует плотные, часто натечные массы, слагает некоторые осадочные породы органогенного происхождения (см. ниже). Бесцветный, белый, серый, примесями бывает окрашен в различные цвета; просвечивает; блеск слабостеклянный, слабожирный; излом раковистый или неровный; твердость 5,5–6; плотность 1,9–2,3. Образуется при выветривании силикатов, в результате жизнедеятельности некоторых организмов; выпадает и из горячих растворов, образуя гейзериты (см. ниже). Используется в ювелирном деле как поделочный камень, в строительстве как абразивный материал.

Широко распространены в природе минералы оксида железа. Гематит, или железный блеск Fe2О3, образует плотные мелкокристаллические агрегаты чешуйчатого строения, скрытокристаллические массы (красный железняк), а также желваки (конкреции) радиально-лучистого или скорлуповатого строения. Сингония гексагональная, подсингония тригональная. Цвет от желто-серого, стально-серого и почти черного у кристаллических разностей до темно-красного у скрытокристаллических; цвет черты от красно-бурого до вишнево-красного; непрозрачный; блеск от металлического до матового; твердость 5,5–6 (у скрытокристаллических агрегатов меньшая); плотность 5,2.

Магнетит, или магнитный железняк FeО.2О3, или FeFe204, обычно образует плотные кристаллические агрегаты. Сингония кубическая. По свойствам напоминает кристаллическую разновидность гематита, но отличается от него черным цветом черты и магнитными свойствами.

Образование гематита и магнетита связано главным образом с эндогенными процессами – магматическими, гидротермальными и метаморфическими. Гематит может возникать и в экзогенных условиях (при выветривании, в морской среде). Месторождения руд, связанных с этими минералами, широко распространены. В РФ следует отметить Урал, Курскую магнитную аномалию, Украину.

Лимонит, или бурый железняк, – это, строго говоря, не минерал определенного состава, а агрегат близких минералов - гётита FeOOH, гидрогётита FeOOH.2О, лепидокрокита FeO(OH) и глинистых частиц, соотношения которых непостоянны. Лимонит образует плотные натечные или землистые рыхлые массы, конкреции и оолиты. Часто можно наблюдать в одном образце переходы плотных разностей в рыхлые. Цвет у рыхлых разностей охристо-желтый, у плотных – черный; черта соответственно желто-бурая или бурая; твердость 1–5; плотность 2,7–4,3. Образование лимонита связано с выветриванием железосодержащих минералов, а также с выпадением из поверхностных вод, причем в этом процессе большую роль играют микроорганизмы. Наиболее крупные месторождения лимонита в РФ на Керченском полуострове, на Северном Кавказе.

Ценным полезным ископаемым на алюминий является боксит, представляющий собой, подобно лимониту, агрегат минералов – оксидов и гидроксидов алюминия: диаспора АlOOН, гидраргиллита Аl(ОН)3, бемита АlO(ОН) с примесью оксидов железа, оксида кремния и др. Встречаются в виде землистых рыхлых или твердых масс, часто образуют оолитовые скопления. Цвет белый, серый, желтый, чаще красный, буро-красный; твердость 2–4. Образуются при выветривании горных пород, которые богаты минералами, содержащими алюминий, и при последующем переотложении продуктов выветривания. Основные месторождения РФ на Северном Урале, в Ленинградской области, в Сибири.

Класс карбонатов объединяет большое число минералов, для которых характерна реакция с соляной кислотой, сопровождающаяся выделением углекислого газа. Интенсивность реакции помогает различать минералы – карбонаты, близкие по многим свойствам. Они часто светлоокрашенные, со стеклянным блеском; твердостью 3–4,5; спайностью совершенной в трех направлениях, параллельных граням ромбоэдра. Рассматриваемые ниже минералы кристаллизуются в тригональной подсингонии. Образование карбонатов связано главным образом с поверхностными химическими и биохимическими процессами, а также с метаморфическими и гидротермальными.

Кальцит, или известковый шпат Са[СО3], - один из наиболее распространенных в земной коре минералов, участвующих в строении как осадочных, так и метаморфических пород. Встречается в виде кристаллических и скрытокристаллических агрегатов различной плотности, в пустотах в виде разнообразных натечных форм, кристаллов и их сростков. Цвет разнообразный - от бесцветного и белого, изредка до черного; блеск стеклянный, на отдельных участках перламутровый; прозрачный или просвечивающий (бесцветные прозрачные кристаллы кальцита, обладающие двулучепреломлением, называются исландским шпатом); твердость 3; плотность 2,7; бурно реагирует ("вскипает") с соляной кислотой. Применение разнообразно: в строительстве, в металлургической и химической промышленностях, как поделочный камень, исландский шпат – в оптике. Месторождения многочисленны.

Доломит CaMg[СO3]2 – распространенный минерал, образующий кристаллические и землистые агрегаты. От кальцита отличается несколько большей твердостью 3,5–4 и плотностью 2,9, а главное, реакцией с соляной кислотой, которая идет только с порошком доломита. Используется в металлургии и строительстве. Распространен широко.

Реже встречается сидерит Fе [СО3], слагающий кристаллические и землистые агрегаты, образующий округлые конкреции и оолиты. Цвет желтовато-белый, буровато-серый; твердость 3,5–4,5; плотность 4. Реагирует только с подогретой соляной кислотой. Является важной железной рудой. Крупные месторождения РФ на Южном Урале.

Минералы класса сульфатов осаждаются в поверхностных водоемах, образуются при окислении сульфидов и серы в зонах выветривания, реже связаны с вулканической деятельностью.

Ангидрит Ca[SO4] – образует плотные мелкокристаллические скопления. Сингония ромбическая. Цвет белый, часто с голубым или серым оттенком; блеск стеклянный, перламутровый; прозрачен, чаще просвечивает; спайность совершенная в одном направлении и средняя в двух, расположенных под углом 90o; твердость 3,5; плотность 3,0. Используется для производства цемента, для поделок. В РФ следует отметить месторождения на Украине.

Наиболее распространенным минералом класса сульфатов является гипс Ca[SO4].2H2O, встречающийся в виде мелкокристаллических и землистых агрегатов, отдельных кристаллов и их сростков. Сингония моноклинная. Обычно белый, бывает окрашен в светлые тона; блеск стеклянный, перламутровый, шелковистый; прозрачный или просвечивает; спайность в одном направлении весьма совершенная, в другом средняя; твердость 2; плотность 2,3. Используется в строительстве, в химической промышленности, медицине и др. Месторождения многочисленны, например Урал, Северный Кавказ.

Класс фосфатов. Наиболее распространенным минералом является апатит Са5[РO4]3(F,ОН,Cl) (содержание фтора, хлора и гидроксильной группы колеблется). Встречается в виде кристаллических агрегатов и отдельных кристаллов гексагональной сингонии. Цвет бесцветный, чаще бледно-зеленый и зеленовато-голубой; блеск на гранях стеклянный, на изломе жирный; излом неровный; спайность несовершенная; твердость 5; плотность 3,2. Происхождение магматическое. Широко используется для производства удобрения и в химической промышленности. Крупные месторождения РФ в Хибинах, в Прибайкалье.

В поверхностных условиях возникает скрытокристаллический минерал того же состава - фосфорит. Образует землистые агрегаты, конкреции, псевдоморфозы по органическим остаткам. Цвет серый до темно-бурого; при трении выделяет специфический запах. Обычно содержит примесь песчаных и глинистых частиц, представляя собой уже породу. Образуется в бассейнах в результате жизнедеятельности и последующей переработки организмов. Используется, как и апатит, для производства удобрений и в химической промышленности. Месторождения РФ многочисленны в европейской части, в Казахстане и др.

Класс силикатов. Минералы этого класса широко распространены в земной коре (свыше 78%). Они образуются преимущественно в эндогенных условиях, будучи связаны с различными проявлениями магматизма и с метаморфическими процессами. Лишь немногие из них возникают в экзогенных условиях. Многие минералы этого класса являются породообразующими магматических и метаморфических горных пород, реже осадочных.

Рис. 2.3. Структура силикатов.

Силикаты характеризуются сложным химическим составом и внутренним строением. В основе их структуры лежит кремнекислородный тетраэдр (см. рис. 2.2), в центре которого находится ион кремния Si4+ , а в вершинах – ионы кислорода О2-, которые создают четырехвалентный радикал [SiO4]4-. Частичная замена четырехвалентных ионов кремния трехвалентными ионами алюминия приводит к возникновению у такого соединения некоторого дополнительного отрицательного заряда. Минералы с подобным строением называются алюмосиликатами. Примером минерала силиката является оливин – (Mg,Fe)2[SiO4], алюмосиликата-ортоклаз K[AlSi3O8]. Кремнекислородные и алюмокремнекислородные тетраэдры в пространстве могут различно сочетаться друг с другом, что определяет кристаллическую структуру минералов и лежит в основе их современной классификации. Например, оливин относится к островным силикатам, и его структура представляет изолированный тетраэдр [SiO4]4-, присоединяющий ионы железа и магния (см. рис. 2.2).

Тетраэдры могут образовывать цепочечные, ленточные и слоевые структуры с соответствующими радикалами (рис. 2.3). Трехмерно соединяясь в пространстве через ионы кислорода, кремнекислородные тетраэдры создают структуру, называемую каркасной. Отрица-тельный заряд алюмокремнекисло-родных тетраэдров обеспечивает присоединение к каркасной структуре катионов и образование каркасных алюмосиликатов. К ним относятся, например, полевые шпаты.

Внутренняя структура силикатов и алюмосиликатов в значительной степени обусловливает их свойства: минералы с островной структурой, характеризующейся плотной упаковкой ионов, часто образуют изометричные кристаллы, обладают большой твердостью, плотностью и несовершенной спайностью. Минералы с линейно вытянутыми структурами (цепочечными и ленточными) образуют призматические кристаллы, обладающие хорошо выраженной спайностью в двух направлениях вдоль длинной оси структуры. Минералы с слоевой структурой образуют таблитчатые кристаллы с весьма совершенной спайностью, параллельной "слоям" структуры.

Островные силикаты. Оливин, или перидот, (Mg,Fe)2[SiO4], член изоморфного ряда минералов форстерит (бесцветный) Mg2[SiO4] и фаялит (черный) Fe2[SiO4]. Встречается обычно в виде зернистых агрегатов или отдельных зерен, вкрапленных в породы. Сингония ромбическая.

Цвет желто-зеленый, оливковый до черного; блеск на гранях стеклянный, на изломе часто жирный; слабо просвечивает; излом неровный, иногда раковистый; спайность средняя и несовершенная; твердость 6,5–7; плотность 3,2–3,5. Разновидности, содержащие мало железа, употребляются для изготовления огнеупорного кирпича, хризолит (желто-зеленая разновидность) - драгоценный камень. Породы, богатые оливином, встречаются на Урале, Кавказе и др.

Цепочечные и ленточные силикаты и алюмосиликаты. Цепочечной структурой обладают минералы группы пироксенов, а ленточной – амфиболов. Они близки по свойствам, но пироксены образуют относительно короткие восьмигранные призматические кристаллы и углы между направлениями спайности у них составляют 87o (93o). Минералам группы амфиболов свойственны длинностолбчатые, игольчатые или волокнистые шестигранные кристаллы, спайность у них более совершенная и ее плоскости располагаются под углом 124o (56o) друг к другу.

В качестве примера минералов группы пироксенов рассмотрим гиперстен (силикат) и авгит (алюмосиликат).

Гиперстен (Fe,Mg)2[Si2O6] относится к сравнительно бедным оксидом кремния пироксенам и представляет собой изоморфную смесь молекул Mg2 [Si2O6] и Fe2 [Si2O6]. Присутствует главным образом в ультраосновных и основных магматических породах. Сингония моноклинная (псевдоромбическая). Цвет серовато-черный с зеленоватым оттенком, коричневато-зеленый; блеск стеклянный, иногда металловидный; твердость 5,5-6; плотность 3,4-3,5.

Авгит (Ca,Na) (Mg,Fe2+,A,Fe3+) [(Si,Al)2O6] встречается в кристаллических агрегатах, реже в виде короткостолбчатых кристаллов моноклинной сингонии. Цвет зеленовато-черный и черный; блеск стеклянный; твердость 5–6,5; плотность 3,2–3,6.

Одним из наиболее распространенных минералов группы амфиболов является роговая обманка (Ca,Na)2(Mg,Fe2+)4(Al,Fe3+) (OH)2[(Si,Al)4O11]2. По свойствам близка к авгиту, отличаясь формой кристаллов и взаимным расположением плоскостей спайности (см. выше), а также несколько меньшей плотностью - 3,1–3,4.

К листовым (слоевым) силикатам и алюмосиликатам относится большое количество минералов, из которых многие являются породообразующими магматических, метаморфических и глинистых осадочных горных пород. Кристаллизуются в моноклинной сингонии. Обладают весьма совершенной спайностью в одном направлении, параллельном "листам" кристаллической структуры, и небольшой твердостью (1–4).

Наиболее распространенными минералами этой структурной группы являются слюды, зерна которых встречаются во многих магматических и метаморфических породах; в жилах отдельные кристаллы слюд достигают в сечении нескольких квадратных метров. Происхождение магматическое, гидротермальное, метаморфическое.

Биотит K(Mg,Fe)3(OH,F)2[AlSi3O10]. Цвет черный, бурый, иногда зеленоватый; блеск стеклянный, местами перламутровый; твердость 2-3; плотность 3–3,2. Как у всех слюд, листочки, отделяющиеся по спайности, упругие.

Мусковит KAl2(OH)2[AlSi3O10] по многим свойствам близок к биотиту, но имеет почти бесцветную окраску со светло-розовым или серым оттенком, прозрачен в тонких листочках; плотность 2,7–3,1. Используется в электропромышленности, радиотехнике, приборостроении, для изготовления огнестойких строительных материалов, красок, смазочных материалов и др. Наиболее крупные месторождения РФ в Карелии, Восточной Сибири.

При гидротермальных процессах и метаморфизме основных и ультраосновных магматических пород (см. ниже), а также карбонатных осадочных пород образуются многие минералы той же структурной группы. Ниже остановимся на наиболее распространенных из них.

Тальк Mg3(OH)2[Si4)O10] образует кристаллические агрегаты, реже отдельные крупные кристаллы и их сростки. Цвет белый, светло-зеленый; блеск стеклянный, перламутровый, у плотных мелкозернистых агрегатов матовый; листочки, отделенные по спайности, гибкие, неупругие; твердость 1 (на ощупь жирный); плотность 2,8. Широко используется как огнеупорный материал, при изготовлении изоляторов, в парфюмерии и пр. Крупные месторождения РФ на Урале, в Восточном Саяне.

Серпентин (змеевик) Mg6(OH)8[Si4O10] встречается обычно в виде плотных скрытокристаллических разностей. Тонковолокнистая разновидность называется хризо-асбестом. Цвет светло-зеленый, желто-зеленый до черного, часто пятнистый, у хризо-асбеста золотистый, отдельные волокна белые; блеск стеклянный, жирный, у хризо-асбеста шелковистый; твердость 2–4; плотность 2,5–2,7. Хризо-асбест используется для изготовления огнестойких и теплоизоляционных материалов. Месторождения в РФ на Урале, в Саянах и др.

Хлориты-минералы, представляющие собой изоморфный ряд соединений состава Мg6(ОН)8[Si4O10] и Mg4Al2(OH)8(Al2Si2O10], в которых Mg2+ и А13+ могут замещаться соответственно Fe2+ и Fe3+. Название этих минералов связано с их зеленой до зелено-черной окраской. Встречаются обычно в виде плотных кристаллических агрегатов, реже в виде отдельных кристаллов. Блеск стеклянный, местами перламутровый; листочки отделяющиеся по спайности, гибкие неупругие; твердость 2–3; плотность 2,6–2,9.

К листовым силикатам относится ряд минералов осадочного происхождения, образующихся при выветривании преимущественно магматических и метаморфических пород. Составляют основную часть глинистых пород. Из этих минералов наибольшим распространением пользуется каолинит Al4(OH)8[Si4O10], образующий землистые агрегаты. Цвет белый; блеск агрегатов матовый; излом землистый; твердость 1 (на ощупь жирный); плотность 2,6; легко поглощает влагу, намокая, становится пластичным. Употребляется в керамическом производстве, строительном деле, бумажной промышленности и др. Месторождения в РФ многочисленны: на Урале, Кавказе и в других местах.

В неглубоких морских бассейнах образуется глауконит K(Fe,Al,Mg)3(OH)2[AlSi3O10].H20 (воды до 5–13%), относимый к гидрослюдам. Встречается в виде мелких зернышек неправильной формы (песчинок) или в виде мелкорассеянного цемента в песчаных и глинистых осадочных породах. Цвет зеленый до темно-зеленого; блеск обычно матовый; твердость 2–3; плотность 2,2–2,8.

Из каркасных алюмосиликатов рассмотрим минералы группы полевых шпатов и один минерал, относящийся к фельдшпатоидам. Почти все они характеризуются сравнительно светлой окраской, просвечивают по краю, твердость их около 6; плотность 2,5–2,75.

Минералы группы полевых шпатов пользуются широким распространением в земной коре, составляя в ней около 50 %. Являются породообразующими многих магматических и метаморфических горных пород. В трещинах образуют крупные кристаллы. Для всех полевых шпатов характерна спайность совершенная или средняя в двух направлениях под углом, близким к 90o. По химическому составу полевые пшаты делятся на две подгруппы: 1) калиевые (калинатровые или щелочные) полевые шпаты; 2) известково-натровые (кальциево-натровые) полевые шпаты или плагиоклазы, представляющие непрерывный изоморфный ряд Na[AlSi3O8] и Са [Al2Si2O8].

Из первой подгруппы наиболее распространен ортоклаз К[А1Si3О8]. Высокотемпературная его разновидность называется санидином. Кристаллизуется в моноклинной сингонии. Цвет от бесцветного (санидин), белого, светло-серого до разных оттенков розового и красно-желтого; спайность в двух направлениях под углом 90o (отсюда и название минерала – прямоколющийся).

Минерал того же состава, но кристаллизующийся в триклинной сингонии, называется микроклином. По внешним признакам микроклин неотличим от ортоклаза, и только его голубовато-зеленая разновидность - амазонит - по цвету легко отличается от других полевых шпатов.

Калиевые полевые шпаты (особенно микроклин) из пегматитовых жил используются в керамической и стекольной промышленности.

В подгруппу плагиоклазов входят минералы, представляющие, как сказано выше, изоморфный ряд, в котором происходит сложное замещение разновалентных ионов Na1+ - Са2+ и А13- - Si4+, что приводит к уменьшению содержания оксида кремния от чисто натриевого минерала альбита к кальциевому анортиту. Между ними располагаются олигоклаз, андезин, лабрадор, битовнит, в которых последовательно увеличивается содержание кальциевой составляющей и соответственно убывает количество натриевой, что сопровождается уменьшением содержания оксида кремния. Среди плагиоклазов по количеству оксида кремния выделяют кислые, средние и основные минералы .

Плагиоклазы кристаллизуются в триклинной сингонии, по свойствам близки друг к другу и макроскопически обычно не разделяются. Исключение составляет лабрадор, у которого на сером фоне хорошо видны синие и зеленые переливы - иризация.

Плагиоклазы макроскопически мало отличаются и от калиевых полевых шпатов. Иногда их можно различить по окраске: плагиоклазы преимущественно белые, серые, зеленовато-серые, калиевые полевые шпаты белые, светло-серые, розовые и желтые разных оттенков. Существует также различие в угле между плоскостями спайности, который у плагиоклазов меньше прямого - 86–87o, откуда и происходит название минералов (плагиоклаз-косоколющийся). Однако такое отклонение от прямого угла макроскопически не фиксируется. Плагиоклазы часто, но не всегда образуют полисинтетические двойники, которые заметны на плоскостях спайности в виде тонкой параллельной штриховки или полосчатости (двойниковая штриховка). Макроскопически часто удается установить лишь принадлежность минерала к группе полевых шпатов без более точного их определения.

Минералы группы фельдшпатоидов содержат по сравнению с полевыми шпатами меньше кремнезема и относительно больше щелочей и поэтому замещают полевые шпаты в щелочных магматических породах (см. ниже). Наиболее распространенным минералом этой группы является нефелин KNa3[AlSiO4]4. Сингония гексагональная. Бесцветный, чаще серый, красновато-серый до коричневого и мясо-красного, цвет часто меняется в одном куске; блеск на гранях стеклянный, на изломе жирный; излом неровный; спайность несовершенная; твердость 5,5–6; плотность 2,6. Используется в керамической, стекольной промышленности и для добычи алюминия. Крупные месторождения в РФ на Кольском полуострове, на Урале.

При изучении минералов важно выяснить условия их образования и характер минеральных скоплений. Это позволяет устанавливать парагенетические ассоциации минералов, т.е. совместное нахождение минералов, образующихся на той или иной стадии одного и того же процесса в сходных физико-химических условиях.

Горные породы

Горные породы представляют естественные минеральные агрегаты, образующиеся в земной коре или на ее поверхности в ходе различных геологических процессов. Основную массу горных пород слагают породообразующие минералы, состав и строение которых отражают условия образования пород. Кроме этих минералов в породах могут присутствовать и другие, более редкие (акцессорные) минералы, состав и количество которых в породах непостоянны.

Если горная порода представляет агрегат одного минерала, она называется мономинеральной. К таким породам относятся, например, мраморы, кварциты. Первые представляют агрегат кристаллических зерен кальцита, вторые - кварца. Если в породу входит несколько минералов, она называется полиминеральной. В качестве примера таких пород можно назвать граниты, состоящие из кварца, калиевого полевого шпата, кислого плагиоклаза, а также темноцветных - биотита, роговой обманки, реже авгита.

Строение горных пород характеризуется структурой и текстурой. Структура определяется состоянием минерального вещества, слагающего породу (кристаллическое, аморфное, обломочное), размером и формой кристаллических зерен или обломков, входящих в ее состав, их взаимоотношениями. Если порода целиком состоит из кристаллических зерен, выделяют полнокристаллическую структуру. При резком преобладании нераскристаллизовавшейся массы говорят о стекловатой или аморфной структуре. Если в стекловатую массу вкраплены кристаллические зерна (фенокристы или порфировые вкрапленники), структуру называют порфировой. Если крупные кристаллические зерна вкраплены также в кристаллическую, но более мелкозернистую массу, структура называется порфировидной. Когда порода состоит из каких-либо обломков, говорят об обломочной структуре.

Кристаллическая и обломочная структуры подразделяются по величине зерен и обломков. Так, среди кристаллических структур выделяют крупнозернистые, с диаметром зерен более 5 мм, среднезернистые с зернами от 5 до 2 мм в поперечнике, мелкозернистые с диаметром зерен менее 2 мм4 . В тех случаях, когда порода состоит из очень мелких, не различимых невооруженным глазом кристаллических зерен, ее структура определяется как афанитовая, или скрытокристаллическая. При более или менее одинаковых размерах зерен породы говорят о равномернозернистой структуре, в противном случае – о неравномернозернистой. Под текстурой понимают сложение породы, т.е. расположение в пространстве слагающих ее частиц (кристаллических зерен, обломков и др.). Выделяют плотную и пористую текстуры, однородную или массивную и ориентированную (слоистую, сланцеватую и др.).

В основу классификации горных пород положен генетический признак. По происхождению выделяют: 1) магматические, или изверженные, горные породы, связанные с застыванием в различных условиях силикатного расплава – магмы и лавы; 2) осадочные горные породы, образующиеся на поверхности в результате деятельности различных экзогенных факторов; 3) метаморфические горные породы, возникающие при переработке магматических, осадочных, а также ранее образованных метаморфических пород в глубинных условиях при воздействии высоких температур и давления, а также различных жидких и газообразных веществ (флюидов), поднимающихся с глубины.

Магматические горные породы наряду с метаморфическими слагают основную массу земной коры, однако, на современной поверхности материков области их распространения сравнительно невелики. В земной коре они образуют тела разнообразной формы и размеров, так называемые структурные формы, состав и строение которых зависят от химического состава исходной для данной породы магмы и условий ее застывания (см. гл. 11). В основе классификации магматических горных пород лежит их химический состав. Учитывается, прежде всего, содержание оксида кремния, по которому магматические породы условно делят на четыре группы кислотности: ультраосновные породы, содержащие более 45% кремнезема (SiO2), основные – 45–52, средние- 52–65 и кислые - более 65%. Химический состав может быть определен лишь при лабораторных исследованиях. Однако минеральный состав отражает химический и может быть использован для выяснения группы кислотности. Породообразующими минералами магматических пород являются минералы класса силикатов: кварц, полевые шпаты, слюды, амфиболы, пироксены, которые в сумме составляют около 93% всех входящих в магматические породы минералов, затем оливин, фельдшпатоиды, некоторые другие силикаты и около 1% минералов других классов. Вспомнив химический состав этих минералов, нетрудно убедиться, что в более основных породах должны преобладать цветные (темноцветные), менее богатые кремнеземом железисто-магнезиальные (мафические, или фемические) минералы, а в кислых - преимущественно светлые. Такое соотношение цветных и светлых минералов обусловливает, светлую окраску кислых пород, более темную основных и черную ультраосновных. С этим же связано увеличение плотности пород от кислых (2,58) к ультраосновным (до 3,4).

В зависимости от условий, в которых происходило застывание магмы, магматические породы делят на ряд групп: породы глубинные, или интрузивные, образовавшиеся при застывании магмы на глубине, и породы излившиеся, или эффузивные, связанные с застыванием магмы, излившейся на поверхность, т.е. лавы. Среди интрузивных пород выделяют ряд разновидностей по глубине застывания магмы (гл. 11), а также жильные породы, связанные с застыванием магмы в трещинах. К вулканическим породам кроме излившихся относятся пирокластические, представляющие скопление выброшенного при вулканических взрывах и осевшего на поверхность материала - куски застывшей в воздухе лавы, обломки минералов и пород.

Физико-химические условия застывания магмы на глубине и лавы на поверхности различны, соответственно различны и образующиеся при этом породы. Наиболее резко это выражается в структуре пород. На глубине при медленном застывании магмы в условиях постепенного снижения температуры и давления, в присутствии летучих компонентов, способствующих кристаллизации, образуются породы с полнокристаллической структурой. Размеры кристаллических зерен зависят от свойств магмы, режима охлаждения, скорости кристаллизации. Излившаяся на поверхность лава попадает в иные условия температуры и давления, теряет растворенные в ней газы и застывает или в виде аморфной массы, имеющей стекловатую структуру, или образует микрокристаллическую массу, т.е. афанитовую структуру. У излившихся пород встречается также порфировая структура, кристаллические вкрапленники которой и основная некристаллическая масса возникли в разных условиях и разновременно.

Интрузивные породы обладают массивной текстурой, характеризующейся отсутствием ориентировки минеральных зерен. Реже встречается ориентированная текстура, отражающая движение магмы в процессе застывания, а также результат ее гравитационной дифференциации. В эффузивных породах ориентированная текстура возникает чаще. При этом кристаллические зерна, струи стекла, пустоты располагаются упорядоченно по направлению течения потока лавы, и породы приобретают флюидальную текстуру. Для них характерна также пористая текстура, отражающая процесс выделения газов при застывании лавы.

Определение эффузивных пород по минеральному составу сильно затруднено, главным образом тем, что значительная их часть состоит из нераскристаллизовавшегося вулканического стекла, для которого можно говорить лишь о химическом составе. Определение таких пород также затрудняют и более поздние их изменения. В случае порфировой структуры эффузивных пород пользуются терминами "порфир", если кристаллические вкрапленники представлены преимущественно калиевыми полевыми шпатами, и "порфирит", если во вкрапленниках преобладают плагиоклазы.

По отношению кремнезема (SiO2) и щелочей (K2O, Na2O) выделяют нормальный ряд пород, характеризующийся относительно малым содержанием щелочей, и щелочной ряд с повышенным их содержанием. В земной коре преобладают породы нормального ряда.

Наиболее распространенные магматические породы. Нормальный ряд. Ультраосновные породы (гипербазиты, или ультра-мафиты) в строении земной коры играют незначительную роль, причем особенно редки эффузивные аналоги этой группы (пикриты и пикритовые порфириты). Все ультраосновные породы обладают большой плотностью (3,0–3,4), обусловленной их минеральным составом (см. выше).

Дуниты – глубинные породы, обладающие полнокристаллической обычно мелко- и среднезернистой структурой. Состоят на 85–100% из оливина, который обусловливает их темно-серую, желто-зеленую и зеленую окраску. В результате вторичных изменений оливин часто переходит в серпентин и магнетит, что придает породам темно-зеленый и черный цвет. В этом случае зернистая структура становится практически невидимой. Для выветрелой поверхности характерна вторичная бурая корка гидроокислов железа.

Перидотиты – наиболее распространенные из ультраосновных глубинных пород. Обладают полнокристаллической средне- или мелкозернистой, порфировидной и скрытокристаллической структурой. Состоят из оливина (70–50%) и пироксенов. Темно-зеленые или черные, что обусловливается цветом оливина или вторичного серпентина. На этом фоне выделяются более крупные вкрапленники пироксенов, хорошо заметные по стеклянному блеску на плоскостях спайности.

Пироксениты – глубинные породы, обладающие полно-кристаллической, крупно- или среднезернистой структурой. Состоят главным образом из пироксенов, придающих породам зеленовато-черный и черный цвет; в меньшем количестве (до 10–20%) присутствует оливин. По содержанию окиси кремния пироксениты относятся к основным и даже средним породам, но отсутствие полевых шпатов позволяет относить их к ультраосновным.

Ультраосновные породы слагают массивы разных размеров, образуя согласные тела и секущие жилы. С ними связаны месторождения многих ценных минералов и руд, таких, как платина, хром, титан и др.

Главными породообразующими минералами основных пород являются пироксены и основные плагиоклазы. Могут присутствовать оливин и роговая обманка. В качестве второстепенных с ними связан также ряд рудных минералов, таких, как магнетит, титаномагнетит и др. Большое количество цветных минералов придает породам темную окраску, на фоне которой выделяются светлые вкрапленники плагиоклазов. Основные породы широко распространены в земной коре, особенно их эффузивные разновидности (базальты).

Габбро – глубинные породы с полнокристаллической средне- и крупнозернистой структурой. Из цветных наиболее типичными минералами являются пироксены (до 35–50%), реже встречаются роговая обманка и оливин. Светлые минералы представлены основными плагиоклазами. Разновидность габбро, состоящая почти целиком из плагиоклазов, называется анортозитом. Если этим плагиоклазом является Лабрадор, порода называется лабрадоритом. Эффузивными аналогами габбро являются базальты (долериты).

Базальты – черные или темно-серые породы, обладающие афанитовой или порфировой структурой. На стекловатом фоне основной массы выделяются очень мелкие порфировые вкрапленники плагиоклазов, пироксенов, иногда оливина. Текстура массивная, часто пористая. Долериты – излившиеся породы того же состава, но с мелкозернистой полнокристаллической структурой. Базальты залегают в виде потоков и покровов, нередко достигающих значительной мощности и покрывающих большие пространства как на континентах, так и на дне океанов.

Средние породы характеризуются большим содержанием светлых минералов, чем цветных, из которых наиболее типична роговая обманка. Такое соотношение минералов определяет общую светлую окраску породы, на фоне которой выделяются темноокрашенные минералы.

Диориты – глубинные породы, обладающие полнокристаллической структурой. Светлые минералы, составляющие около 65–70%, представлены главным образом средним плагиоклазом, придающим породам светло-серую или зеленовато-серую окраску. Из темноцветных чаще всего присутствует роговая обманка, реже пироксены. В небольших количествах могут встречаться кварц, ортоклаз, биотит, однако при макроскопическом изучении они практически не могут быть обнаружены. Если количество кварца достигает 5–15%, породы называются кварцевыми диоритами. Диориты и кварцевые диориты встречаются в массивах гранитов и габбро, а также образуют небольшие отдельные тела типа жил, штоков, лакколитов.

Излившимися аналогами диоритов являются андезиты, обладающие обычно порфировой структурой. Основная скрытокристаллическая или очень мелкокристаллическая масса, содержащая стекло, имеет светло-серый или светло-бурый цвет. На ее фоне выделяются блестящие светло-серые вкрапленники плагиоклазов и черные – роговой обманки и пироксенов. Текстура массивная, часто пористая.

Для всех кислых пород характерно наличие кварца. Кроме того, в значительных количествах присутствуют полевые шпаты - калиевые и кислые плагиоклазы. Из цветных характерны биотит и роговая обманка, реже пироксены. В этой группе наиболее широко развиты интрузивные породы.

Граниты – глубинные породы, обладающие полнокристаллической, обычно среднезернистой, реже крупно- и мелкозернистой структурой. Породообразующие минералы-кварц (около 25–35%), калиевые полевые шпаты (35–40%) и кислые плагиоклазы (около 20–25%), из цветных - биотит, в некоторых разностях частично замещающийся мусковитом, реже роговая обманка, еще реже пироксены. Если содержание кварца в породе не превышает 15–25%, а из полевых шпатов преобладают плагиоклазы и увеличивается количество темноцветных, порода называется гранодиоритом. Граниты - самая распространенная интрузивная порода. Они слагают огромные тела на щитах и в складчатых областях, а также мелкие секущие интрузии.

Излившимися аналогами гранитов являются липариты (риолиты), аналогами гранодиоритов – дациты.

Липариты имеют порфировую структуру, в светлой, часто белой, обычно стекловатой, реже афанитовой основной массе вкраплены редкие мелкие кристаллические зерна калиевых полевых шпатов (обычно санидина) и еще более редкие плагиоклазов и кварца, очень редко темноцветных. В дацитах во вкрапленниках преобладают кислые плагиоклазы, однако, макроскопически это не определяется.

Кислые породы со стекловатой структурой, представляющие однородную аморфную массу серой, до черной, иногда буро-красной окраски, в зависимости от содержания воды называются обсидианами (при содержании воды до 1%) и пехштейнами (при большем количестве воды, около 6–10%). Первые имеют стеклянный блеск и раковистый излом, у вторых блеск смоляной. Если стекловатая порода имеет пористую текстуру, она называется пемзой, обладающей очень низкой плотностью (плавает на воде).

Щелочной ряд. Щелочные породы в земной коре встречаются реже пород нормального ряда. Среди них выделяют породы с фельдшпатоидами и без них, но и те и другие характеризуются относительно повышенным содержанием щелочных минералов. Примером щелочных пород без фельдшпатоидов являются сиениты - средние глубинные породы, главными породообразующими минералами которых являются калиевые полевые шпаты (более 30%), меньшую роль играют средние или кислые плагиоклазы и темноцветные минералы (роговая обманка, биотит, реже пироксены). В небольших количествах (до 5%) может присутствовать кварц. Калиевые полевые шпаты обусловливают преимущественно розовый, серовато-желтый цвет пород. Структура полнокристаллическая, часто среднезернистая, порфировидная. Сиениты встречаются довольно редко в виде небольших секущих тел, чаще сопровождают кислые и основные интрузии. Излившиеся аналоги сиенитов – трахиты – также редки.

В качестве примера пород с фельдшпатоидами рассмотрим нефелиновые сиениты – средние глубинные породы, обладающие полнокристаллической, обычно крупнозернистой структурой. В них преобладают светлые минералы (70% и более), представленные щелочными полевыми шпатами (ортоклазом, микроклином, альбитом) и нефелином. Из темноцветных присутствуют железистые разности биотита, щелочные амфиболы и пироксены. Нефелиновые сиениты образуют обычно небольшие секущие тела типа штоков. Излившиеся аналоги нефелиновых сиенитов – фонолиты – встречаются еще реже.

Жильные и вулканогенно-обломочные породы формируются при застывании магматических расплавов в трещинах, рассекающих как магматические, так и вмещающие породы. Для жильных пород характерна полнокристаллическая структура, обычно мелкозернистая, часто порфировидная. Встречаются породы и с очень крупнозернистой структурой, обусловленной составом магмы и условиями ее кристаллизации. По минеральному составу могут соответствовать интрузивным породам любой кислотности. Среди жильных пород выделяются нерасщепленные (асхистовые) и расщепленные (диасхистовые) породы. Минеральный состав первых аналогичен составу глубинных пород интрузий, с которыми они связаны (материнских интрузий), отличаясь лишь структурой. Если структура мелко- или микрозернистая, это отражается в названии породы, например, жильный гранит или микрогранит. Если структура жильной породы порфировидная, к названию соответствующей глубинной породы прибавляется слово порфир (для пород с калиевыми полевыми шпатами) или порфирит (для плагиоклазовых пород) - гранит-порфиры, диорит-порфириты и др.

Расщепленные породы с преобладанием светлых минералов называются аплитовыми (лейкократовыми), а темноцветных -лампрофировыми (меланократовыми). Для светлых пород с крупной (до гигантской) зернистой структурой используется название пегматиты. Наибольшим распространением пользуются кислые пегматиты. Они состоят преимущественно из полевых шпатов и кварца, а также слюд со взаимным прорастанием кристаллов.

Вулканогенно-обломочные (пирокластические) породы являются результатом скопления выброшенного при вулканических взрывах и затем осевшего материала. В зависимости от размера и условий извержения частицы разносятся от места взрыва на большее или меньшее расстояния - от нескольких километров до многих сотен и тысяч километров. Осаждающийся на поверхности Земли материал образует рыхлые скопления, которые в зависимости от размеров обломков называются вулканическим пеплом при пылеватых размерах частиц, вулканическим песком при песчаной размерности обломков; обломки более крупные называются лапиллями (камушками) и вулканическими бомбами, достигающими нескольких метров в поперечнике. Весь рыхлый пирокластический материал называется тефрой. В последующем обломки различными путями цементируются и образуются крепкие породы - вулканические туфы и агломераты или вулканические брекчии (при больших размерах обломков), а также лавовые брекчии (при лавовом цементе).

Магматические породы широко применяются в различных отраслях строительства. С разными их группами связаны различные комплексы металлических полезных ископаемых. К ультраосновным породам приурочены руды платины, железа, хрома, никеля. Основные породы сопровождаются месторождениями магнетита, титаномагнетита, ильменита, медных и полиметаллических руд; средние – магнетита, халькопирита, золота и др.; кислые породы содержат золото, цветные, редкие, радиоактивные металлы. Нефелиновые сиениты используются как руда на алюминий. Определенные связи устанавливаются также между составом магматических пород и неметаллическими полезными ископаемыми. Например, ультраосновные породы часто сопровождаются скоплениями талька, асбеста, кислые – мусковита, флюорита, щелочные – нефелина, апатита, корунда и др.

Осадочные горные породы. На поверхности Земли в результате действия различных экзогенных факторов образуются








Дата добавления: 2015-10-26; просмотров: 3667; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию, введите в поисковое поле ключевые слова и изучайте нужную вам информацию.

Поделитесь с друзьями:

Если вам понравился данный ресурс вы можете рассказать о нем друзьям. Сделать это можно через соц. кнопки выше.
helpiks.org - Хелпикс.Орг - 2014-2022 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.113 сек.