Теплообмене

№ п/п Наименование величины Показатель степени Размерности
      кг м с °К Дж
l il -
u iu -2 -1
m im -1 -1
r ir -3
l il -1 -1 -1
С ic -1 -1
a -1 -2 -1 -1

 

Исключаем размерности:

1 — (кг) iu + im + ir - ic = 0

2 — (м) il - 2iu - im - 3ir - il+ 2 = 0

3 — (c) - il -im - il+ 1 = 0

4 — (°К) - il - ic + 1 = 0

5 — (Дж) il + ic - 1 = 0.

Как видно из последних двух уравнений, полученных исключением размерности, они тождественны, т. к. определяются из теплоемкости воды. Таким образом, имеем 4 независимых уравнения связи при шести независимых переменных. Следовательно, в исходной системе уравнений только два неизвестных показателя подлежат экспериментальному определению, а остальные определяются по полученной системе уравнений в зависимости от этих двух основных. Например, в опыте определены показатели и они соответственно равны: iu= n; ic = m (n, m — число); тогда, используя систему уравнений, получим:

из 4 — il= 1 - ic= 1 - m

из 3 — im = - iu - il + 1 = -n + 1 + m - 1 = m - n

из 1 — ir = ic - iu - im = m - n - m + n = 0

из 2 — il = 2iu + im + il + 3ir - 2 = 2n + m - n +1 - m - 2 = n - 1.

Подставив полученные значения показателей в (4.48), получим

(4.49)

Преобразуем полученные уравнения, сгруппировав величины с одинаковыми показателями

(4.50)

или

, (4.51)

где ul/μ = ωl/ν = Re — критерий Рейнольдса — критерий гидродина-мического подобия;

μС/λ = ν/a = Pr — критерий Прандтля — критерий теплофизического подобия;

αl/λ = Nu — критерий Нуссельта — критерий теплового подобия.

Таким образом, на основании теории размерностей получено уравнение связи безразмерных параметров, характеризующих теплообмен в условиях вынужденной конвекции и число независимых переменных снижено с 6 до 2, что обеспечивает возможность их экспериментального определения, и тогда N=An=100.

Правильность использования теории размерностей подтверждается π-теоремой, исходя из чего физическое уравнение, содержащее n³2 размерных величин, из которых m³1 имеют независимые размерности, после приведения их к безразмерному виду должно содержать n безразмерных параметров n = n – m. В нашем случае n = n – m = 6 – 4 = 2. Численные значения постоянных, входящих в уравнение (4.51) С0, n, m, определяются экспериментально и в зависимости от вида теплообмена приводятся в справочной литературе, некоторые даны в табл. 4.3.









Дата добавления: 2015-10-13; просмотров: 595;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.