Приток к скважине в пласте с прямолинейным контуром питания. Пусть в полосообразном пласте пробурена одна скважина с центром в точке О1на расстоянии а от прямолинейного контура (ось у ) бесконечного протяжения

 

Пусть в полосообразном пласте пробурена одна скважина с центром в точке О1на расстоянии а от прямолинейного контура (ось у ) бесконечного протяжения, на котором поддерживается постоянный потенциал jк . На скважине радиуса rcподдерживается постоянный потенциал jс. Найдём дебит скважины Gи распределение функции j.

Так как контур питания пласта является эквипотенциальной линией, то все линии тока, сходящиеся в центре скважины О1, должны быть перпендикулярны к прямой (рис.4.6). Для определения поля течения добьёмся выполнения граничных условий на контуре введением фиктивного источника О2 с дебитом, равным дебиту стока О1, путём зеркального отображения данного стока относительно прямой 0у.Т.о. используем ранее упомянутый метод отображения и задачу о потоке в пласте с прямолинейным контуром питания и с одиночной эксплуатационной скважиной сведём к ранее рассмотренной в разделе 4.1.1. задаче о совместном действии источника и стока равной производительности. Отличие данных задач только в постановке граничных условий: в задаче раздела 4.1.1. источник питания - нагнетательная скважина, а в данном случае - прямолинейный контур, а источник О2фиктивный.

 

Т.о. используем для определения дебита выражение (4.10), но со следующей заменой граничных условий:

j=jк при r1=r2 ,т.е. при r1/r2=1;

j=jс при r1=rс , r2»2а, т.е. при r1/r2» rс /2а;

Подставляя последовательно соответствующие граничные значения j, r1и r2 в равенство (4.10) получим два уравнения, определяющих потенциалы на контуре и забое. Из этих уравнений легко находится массовый дебит одиночной скважины в пласте с прямолинейным контуром

. 4.18

Если бы в пласте была нагнетательная скважина, то в формуле (4.18) достаточно только изменить знак правой части.

 








Дата добавления: 2015-10-13; просмотров: 653;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.