Абсолютная и условная сходимость рядов.
Рассмотрим некоторый знакопеременный ряд (с членами произвольных знаков).
(1)
и ряд, составленный из абсолютных величин членов ряда (1):
(2)
Теорема. Из сходимости ряда (2) следует сходимость ряда (1).
Доказательство. Ряд (2) является рядом с неотрицательными членами. Если ряд (2) сходится, то по критерию Коши для любого e>0 существует число N, такое, что при n>N и любом целом p>0 верно неравенство:
По свойству абсолютных величин:
То есть по критерию Коши из сходимости ряда (2) следует сходимость ряда (1).
Определение. Ряд называется абсолютно сходящимся, если сходится ряд .
Очевидно, что для знакопостоянных рядов понятия сходимости и абсолютной сходимости совпадают.
Определение. Ряд называется условно сходящимся, если он сходится, а ряд расходится.
Дата добавления: 2015-10-13; просмотров: 1048;