Тема лекции 13: Средства автоматизированного программирования
Содержание темы: Средства автоматизации проектирования программного продукта. Язык ассемблера, директивы языка ассемблера. Симуляторы для отладки программного обеспечения микропроцессорных систем, построенных на базе семейств MCS-51и PIC-контроллеров. Этапы разработки программного обеспечения.
Под всеобъемлющим термином "САПР" (система автоматизированного проектирования) в России понимают ряд англоязычных терминов (CAD/CAM/CAE/PDM/TDM/AEC/GIS и т.д.). В процессе автоматизированного проектирования в качестве входной информации используются технические знания специалистов, которые вводят проектные требования, выполняют различные проверочные расчеты, анализируют и уточняют полученные результаты, выполняют модификацию конструкции.
Первые САПР (CAD) были созданы в 1960-х годах и получили наибольшее распространение в электронике и механике. Это объясняется тем, что объекты проектирования в этих областях сравнительно легко формализуются, а результаты проектирования представляют собой программу для станков с числовым программным управлением (ЧПУ), что резко сокращает период между началом разработки и началом серийного выпуска изделия. Сейчас, наиболее широко автоматизированное проектирование используется в машиностроении, архитектуре и строительстве, картографии и кадастре, в электротехнике и электронике.
Перечислим этапы типового цикла проектирования блоков питания электронной аппаратуры можно разбить на несколько этапов:
разработка структурной схемы;
разработка принципиальной схемы, включая моделирование;
предварительное определение конструктивных требований;
разработка печатной платы;
разработка конструктива;
оценка электромагнитной совместимости;
оценка тепловых режимов;
оценка надежности;
изготовление прототипов, отладка и испытания.
В современных условиях почти на всех перечисленных этапах должны использоваться специализированные системы автоматизированного проектирования электронных устройств (Electronic Design Application - EDA). Поэтому основные направления проектирования, можно разделить на следующие задачи:
моделирование смешанных аналого-цифровых устройств;
моделирование и синтез логики для ПЛИС;
схемотехническое и электромагнитное моделирование СВЧ-устройств;
поведенческое моделирование на уровне структурных схем;
проектирование печатных плат;
анализ электромагнитной совместимости;
тепловое моделирование;
средства подготовки печатных плат к производству;
проектирование топологий БИС;
проектирование электротехнических схем и чертежей.
Современные средства проектирования позволяют решать не одну задачу проектирования, а группу задач. Стоимость EDA продуктов сильно зависит от их функциональности, поэтому надо знать основные детали, которые следует иметь в виду при выборе системы проектирования.
Наиболее распространенной задачей при проведении научно-исследовательских и опытно-конструкторских работ является моделирование аналого-цифровых устройств.Системы моделирования позволяют резко уменьшить объем экспериментальных исследований, для проведения которых требуется приобретение дорогостоящих измерительных приборов, радиодеталей, трудоемкая сборка и длительная настройка макетов.
Применение программ моделирования позволяет всесторонне исследовать разрабатываемые устройства в различных режимах работы (например, в предельно допустимых режимах), что сложно выполнить экспериментальными методами. Результаты макетирования дают ограниченный объем информации о характеристиках разрабатываемой аппаратуры. Экспериментальные исследования отражают характеристики лишь конкретных единичных макетов. Они не позволяют оценить влияние статистического разброса параметров полупроводниковых и других элементов устройства, и поэтому трудно делать обобщающие выводы по результатам макетирования. Экспериментально сложно определить, какие последствия вызовет наихудшее сочетание параметров радиоэлементов, и что произойдет при отказе отдельных радиоэлементов. Опытным путем не просто исследовать влияние дестабилизирующих факторов, например, внешней температуры. Перечисленные проблемы, возникающие при экспериментальных исследованиях, легко преодолеваются путем моделирования работы устройств.
Программы моделирования могут с успехом использоваться и в учебном процессе. Это избавляет от необходимости делать значительные затраты на приобретение оборудования для лабораторных работ, исключает отказы оборудования из-за ошибочной коммутации, позволяет исследовать многие режимы работы устройств, которые недопустимы в реальных макетах.
Кратко рассмотрим назначение и применяемые САПР основных задач проектирования.
Разработка любого электронного устройства начинается с идеи, которая воплощается в виде структурной (укрупненной) схемы. Быстро проверить жизнеспособность и все возможные варианты будущей системы можно с помощью специальных программ функционального моделирования. Как правило, на функциональном уровне важно правильно оценить поведение замкнутых петель обратной связи в схемах регулировки тока или напряжения, начиная с момента включения. Здесь можно порекомендовать программы SimuLink, SysCalc, SystemView, LabView, Hyper-Signal Block Diagram, Dynamo, VisSim которые позволяют построить моделируемую систему из "кубиков" в точной аналогии со структурной схемой.
Обычно работа таких систем представляет собой конструктор, с помощью которого из стандартных "кубиков" строится структурная схема. В библиотеке выбирают нужный модуль, который затем переносят на схему.
После этого этапа проектируются принципиальные схемы самих блоков, осуществляется различные проверки и выбирается элементная база.
Объединение схемотехнического моделирования c функциональным моделированием обладает рядом достоинств, к которым, например для связки в программ MATLAB/Simulink и OrCAD, следует отнести:
моделирование с идеальными моделями, позволяющими доказать работоспособность моделируемого устройства;
моделирование радиоэлектронных проектов с использованием моделей компонентов PSpice;
большая библиотека компонентов для PSpice и блоков для Simulink;
полный доступ к окружающей среде PSpice для проектирования и отладки;
полный доступ к MATLAB для осуществления анализа и визуализация данных.
Проектирование принципиальных схем. Детальное исследование радиоэлектронных устройств на ЭВМ на уровне принципиальных схем можно провести с помощью множества специальных программ. В учебных целях и начальных этапах работы целесообразно применять более простые программы: Electronics Workbench&MiltiSim, MicroCAP, CircuitMaker, Aplac, TangoPRO и др. Большинство этих программ готовят данные в текстовом формате SPICE, чем обеспечивается совместимость со многими программами.
Для сложных задач используются OrCAD (PSpice A/D) и SPECCTRA, P-CAD 2000-200X (ACCEL EDA) и Altium Designer (Protel), eProduct Designer, PowerPCB, CAM 350, Viewlogik (Analog), BETASoft, MATLAB+Simulink и т.д.
При проектировании устройств сверхвысокочастотного диапазона могут быть использованы программы Super Compact, Touchstone, Libra, Microwave Office.
Все современные продукты предполагают ввод проекта в редакторе принципиальных схем, после чего генерируется список соединений, необходимый для работы программы моделирования. В качестве счетного ядра почти во всех программах используется программа SPICE (Simulation Program with Integrated Circuit Emphasis). Различные версии этого алгоритма были в разное время заимствованы производителями программного обеспечения для использования в своих продуктах. Сейчас для моделирования аналоговых устройств в основном используется версия SPICE 3, а для моделирования цифровых устройств версия XSPICE. Эта версия была разработана специально для моделирования цифровых устройств, описанных списком соединений, причем сами модели компонентов описываются на языке SimCode.
Если сложность разрабатываемых устройств невелика, то для проектирования можно использовать более дешевые продукты, например, Electronic Workbench, Pulsonix, MicroCAP, CircuitMaker.
Наиболее легка в освоении программа Electronics Workbench. Она построена интуитивно понятно, и работа с этой программой напоминает экспериментальную деятельность радиоинженера. В программе имеются виртуальные приборы (вольтметры, амперметры, генераторы, осциллограф, измеритель амплитудно-частотной характеристики и т.п.). Испытуемая схема "монтируется" на виртуальном столе, и затем делаются необходимые измерения. При этом настройка виртуальных измерительных приборов осуществляется практически так же, как и настройка реальных приборов. Предусмотрена возможность вывода данных для программы разработки печатных плат. После пятой версии программа переименована в MultiSIM плюс год издания (2001, 2003), хотя иногда используют старое название Electronics Workbench (6, 7, 8,9). Все версии после 5 являются скорей профессиональными, чем учебными.
Сейчас пакет принадлежит NI. Multisim 10.1 реализованы новые возможности профессиональной разработки, нацеленные также на модернизацию процесса моделирования, улучшению совместимости с моделями PSpice и базой данных из 300 новых компонентов лидирующих производителей, таких как Analog Devices и Texas Instruments. Среда Multisim 10.1 также обладает автоматизированным интерфейсом прикладного программирования (API) в помощь разработчикам для автоматизации моделирования в COM-ориентированных языках программирования.
Благодаря интеграции Multisim 10.1 и LabVIEW, специалисты смогут точнее определять и анализировать поведение схем и детектировать ошибки еще на ранних стадиях разработки. Кроме того, с использованием бета версии NI LabVIEW Multisim Connectivity Toolkit, разработчики смогут улучшить реализацию своих проектов.
Программа Micro-Cap (Microcomputer Circuit Analysis Program) рекомендуется для выполнения исследовательских работ, не предусматривающих немедленной конструкторской реализации (т.е. разводки печатной платы и оформления конструкторской документации). В состав программы входит модуль расчета параметров моделей аналоговых элементов по результатам экспериментальных исследований (таким способом создаются новые модели). В системе предусмотрен режим исследования чувствительности выходного сигнала к изменению параметров любого элемента. Есть возможность определить входное и выходное сопротивление устройства. Предусмотрена возможность разработки активных и пассивных фильтров с заданными параметрами.
Сходными возможностями обладает программа CircuitMaker. Программа позволяет осуществить пошаговое (по тактам) исследование цифровых схем, создать собственные микросхемы пользователя (определить их внутреннее устройство), и затем использовать их как обычные стандартные микросхемы. Элементы анимации наглядно зафиксируют наступление событий. Для использования в учебном процессе в системе предусмотрен режим умышленного создания неисправностей. Это одно из самых дешевых решений для проектирования несложных печатных плат. Стандартная версия программы позволяет разрабатывать платы, содержащие до шести сигнальных слоев и до двух слоев металлизации.
Проектирования печатных плат. Большинство систем проектирования печатных плат представляет собой сложный комплекс программ, обеспечивающий сквозной цикл, начиная с прорисовки принципиальной схемы и заканчивая генерацией управляющих файлов для оборудования изготовления фотошаблонов, сверления отверстий, сборки и электроконтроля.
Пакет Expedition PCB (компания Mentor Graphics) представляет сейчас наиболее мощное и дорогое решение в области проектирования плат. Основу системы составляет среда AutoActive, позволяющая реализовать такие функции, как предтопологический анализ целостности сигналов, интерактивная и автоматическая трассировка с учетом требований высокочастотных плат и специальных технологических ограничений, накладываемых использованием современной элементной базы (BGA). Единая среда позволяет с помощью модуля ICX моделировать наводки в проводниках непосредственно при прокладке трассы или шины и контролировать превышение ими заданного уровня (рис. 1).
Другой продукт компании Mentor, система PADS предлагает более дешевое решение. Эта система может похвастаться лучшим автотрассировщиком BlaseRouter, поддерживающим все необходимые при трассировке высокочастотных плат функции (рис. 2). Пакет имеет модули предтопологичекого (HyperLinks LineSim) и посттопологического (HyperLinks BoardSim) анализа, тесно взаимодействующих с системой контроля ограничений. Сейчас эти модули значительно улучшены за счет внедрения в них оригинальных алгоритмов моделирования, ранее применявшихся в продукте XTK компании Innoveda.
Рис. 1. Анализ наводок в соседних проводниках при прокладке трассы в пакете Expedition PCB.
Рис. 2. Автоматическое изменение формы проводника с контролируемой длиной при перемещении конденсатора в пакете PADS PowerPCB.
Далее по мощности предлагаемых решений идут решения компании Cadence. Для верхнего уровня проектирования предлагается пакет PCB Design Studio. В качестве редактора печатных плат здесь используется программа Allegro, позволяющая разрабатывать многослойные и высокоскоростные платы с высокой плотностью размещения компонентов. В качестве штатного модуля авторазмещения и автотрассировки здесь используется программа SPECCTRA, управляемая обширным набором правил проектирования и технологических ограничений. Этот модуль является одним из лучших. Анализ электромагнитной совместимости топологии платы выполняется с помощью специального модуля SPECCTRAQuest SI Expert, для предварительного анализа проекта и подготовки наборов правил проектирования используется модуль SigXplorer.
Другой продукт компании Cadence, пакет OrCAD рекомендуется как более легкое и дешевое решение для проектирования печатных плат. Данный пакет рассматривается фирмой Cadence как приоритетная система ввода проектов, моделирования и оптимизации схем по различным критериям: модули Capture CIS и PSpice сейчас поставляются в составе пакета PCB Design Studio. Усилены возможности синтеза и моделирования цифровых логических схем модуля NC Sim. Редактор печатных плат OrCAD Layout имеет три различные конфигурации с разными функциональными возможностями. В проекте платы здесь может присутствовать до 30 слоев, 16 из которых могут быть сигнальными. Имеются встроенные средства авторазмещения и автотрассировки, а также интерфейс с программой SPECCTRA. Для работы с силовыми цепями используют объединение схемотехнического моделирования в программе OrCAD с функциональным моделированием в программе MATLAB/Simulink.
Третьим основным производителем САПР печатных плат можно назвать компанию Altium Ltd (бывшая Protel International), которая выпустила в свет пакет Altium Designer (прежнее название продукта Protel DXP и развитие пакета PSpice корпорации MicroSim). Это комплексная система сквозного проектирования высокоскоростных электронных устройств на базе печатных плат, которая позволяет разработчику создавать проекты, начиная с принципиальной схемы и VHDL-описания ПЛИС, проводить моделирование полученных схем и VHDL-кодов, подготовить файлы для производства. Встроенный помощник импорта проектов позволяет импортировать схемы, платы, библиотеки из систем PCAD, OrCAD, PADs, DxDesigner, Allegro PCB, преобразовывая их в проекты Altium Designer. Поддерживается передача данных в пакеты проектирования печатных плат P-CAD, OrCAD, CADStar, PADS, Protel, SCICARDS и TangoPro. Дополнительно поставляется библиотека отечественных полупроводниковых приборов.
Эта компания продолжает развивать популярный в России свой второй пакет проектирования печатных плат P-CAD 2000-200Х. В свое время фирма Altium сделала маркетинговый ход, переименовав пакет ACCEL EDA в популярной в России название P-CAD. Самые последние версии стали больше походить на Protel. Модуль SIM 99 SE используемый в этих двух пакетах, позволяет проводить все стандартные виды анализа на базе алгоритма SPICE. С его помощью можно проводить параметрический анализ, изменяя одновременно не один, а два параметра. P-CAD поддерживает выходной формат данных ODB++, содержащий полную информацию о проекте по ГОСТ и поддерживаемый большинством систем управления ресурсами предприятия. Возможна связь с автотрассировком SPECCTRA.
В состав P-CAD входят два основных модуля - P-CAD Schematic, P-CAD PCB, и ряд других вспомогательных программ. P-CAD Schematic и P-CAD PCB - соответственно графические редакторы принципиальных электрических схем и печатных плат (ПП). Последняя версия системы - P-CAD 2006 SP3 SP2. В 2006 году компания Altium официально заявила о прекращении разработки данного продукта.30 июня 2008 года была прекращена поддержка. Для замены этой системы компания Altium предлагает систему Altium Designer.
Программа CAM350 является очень популярной в России, так как ранее облегченная версия этого продукта поставлялась с пакетом P-CAD 2000-200Х (ACCEL EDA), поэтому имела схожую с ней идеологию и позволяла загружать проект платы не в виде набора Gerber файлов, а файл PCB с сохранением информации об электрических связях.
Нельзя не упомянуть еще один почти неизвестный в России, но достаточно мощный и популярный в мире продукт - Visula компании Zuken. Продукты этой компании обеспечивают сквозной цикл проектирования и предлагают мощные средства моделирования и синтеза программируемой логики с последующей разработкой печатной платы. Здесь имеется стандартный набор инструментария, а также собственные средства авторазмещения и автотрассировки. Следует отметить, что компания Zuken также предлагает пользователям интегрированные средства трехмерного твердотельного моделирования разрабатываемых устройств (рис. 3).
Рис. 3. Трехмерное моделирование платы средствами компании Zuken.
Почти все программы были ориентированны на оформление документации согласно IEEE и ISO. Для привязке к отечественным ГОСТ, требовались доработки. Проблему переложили на плечи самих пользователей, дав им в руки DBX-интерфейс, позволяющий разрабатывать надстройки к программе. Оформлением текстовой документации по ГОСТ, можно с помощью программы TDD, а используемый редактор схем получил название Schemage (читается "схема-джи"). Редактор может генерировать список соединений в форматах P-CAD ASCII или Tango на основании полученной схемы может быть разработана печатная плата во многих популярных САПР, таких как P-CAD 200Х, Protel или OrCAD.
Анализ электромагнитной совместимости. Легко заметить, что мощность всех перечисленных выше программ в значительной мере определяется встроенными средствами анализа электромагнитной совместимости(ЕМС). В этой связи нельзя не отметить некоторые специализированные программы. Современные тенденции развития цифровой техники диктуют необходимость изменения подхода к этой проблеме. Большинство программ анализа EMC используют модели микрополосковых линий, считающих проводники питания и заземления идеальными, и не учитывают распределение токов в них.
Пионером в данной области выступила компания Sigrity, которая разработала пакет Speed XP. Эта программа использует не упрощенные модели, а численные методы решения электродинамических задач, благодаря чему стало возможным исследование распространения помех по внутренним слоям питания (рис.17.4). Однако, наличие столь мощной математики делает программу почти на порядок дороже продуктов ближайших конкурентов, которые предпринимают попытки реализовать аналогичные методы в своих системах, как например, компания Mentor Graphics.
Рис. 4. Анализ помех в слое заземления в пакете Speed 2000.
Из программ, реализующих классический подход к анализу EMC, следует отметить канадскую компанию Quantic EMC предлагающую на рынок продукт Omega PLUS. Этот пакет не является системой проектирования, зато имеет средства импорта проектов из всех вышеперечисленных САПР. Помимо обычного анализа целостности сигналов и перекрестных искажений, здесь могут быть получены спектры и интенсивность излучения платы в заданном диапазоне частот, уровни токов в проводниках, а также интенсивность электрического и магнитного полей над платой.
Литература:1 осн.[236-241]; 2 осн.[151-155].
Контрольные вопросы:
1. Основные понятия и определения.
2. Этапы развития Скада систем.
3. Отличия и особенности применения различных Скада систем.
4. Назовите основные компоненты, достоинства и недостатки Скада системы.
5. Что такое “эталонная модель взаимодействия открытых систем”?
6. За счёт чего ИВС, организованные согласно требованиям эталонной модели, обеспечивают открытость, гибкость и эффективность?
Дата добавления: 2015-10-13; просмотров: 1198;