Материалы для изготовления полупроводников и строение фотоэлемента

Преобразование энергии в ФЭП основано на фотоэлектрическом эффекте, который возникает в неоднородных полупроводниковых структурах(т.е. в фотоэлементе, состоящего из двух полупроводников разной проводимости) при воздействии на них солнечного излучения.

Для получения этого эффекта используются специальные вещества – полупроводники. Они бывают двух типов: с p- и n-проводимостью. N-проводимость означает избыток электронов в веществе, p-, соответственно, - их недостаток

Неоднородность структуры ФЭП может быть получена:

- легированием одного и того же полупроводника различными примесями (создание p-n переходов), например, кремний с добавкой фосфора для получения слоя с n-проводимостью (электронная проводимость), кремний с добавкой бора для получения слоя с р-проводимостью (дырочная проводимость;

- путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны — энергии отрыва электрона из атома (создание гетеропереходов);

- за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур).

Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры (фотоэлемента) а также оптических свойств ФЭП , среди которых наиболее важную роль играет фотопроводимость.
Среди фотоэлектрических установок условно выделяют несколько типов по применяемому в производстве материалу (в порядке уменьшения КПД):

· арсенид галлия (жесткие, тяжёлые модули с КПД 10-25%, сохраняют работоспособность до температур +150°С, спектр 0.5-0.9 – "видимый", дорогие);

· монокристаллический кремний и поликристаллический кремний (жесткие, КПД 12-20% – уменьшается при нагреве - 0.45%/°С считая от +25°С, спектр 0.5-1.0 – "видимый + инфракрасный");

· аморфный кремний (гибкие батареи, КПД 5-10%, спектр 0.2-0.7 – "ультрофиолет+видемый");

· сульфидно-кадмиевые (тонкоплёночные – гибкие, КПД 5-10% – стабилен до температур +100°С, спектр 0.2-0.7– "ультрафиолет");

· CIGS – медь, индий, галлий и селен.

Арсенид галлия – один из наиболее перспективных материалов для создания высокоэффективных солнечных батарей. Это объясняется следующими его особенностями:

– почти идеальная для однопереходных солнечных элементов ши-рина запрещенной зоны 1,43 эВ;

– повышенная способность к поглощению солнечного излучения: требуется слой толщиной всего в несколько микрон;

– высокая радиационная стойкость, что совместно с высокой эф-фективностью делает этот материал чрезвычайно привлекательным для использования в космических аппаратах;

– относительная нечувствительность к нагреву батарей на основе GaAs;

– характеристики сплавов GaAs с алюминием, мышьяком, фосфором или индием дополняют характеристики GaAs, что расширяет воз-можности при проектировании солнечных элементов.

Основной недостаток арсенида галлия – высокая стоимость. Для удешевления производства предлагается формировать солнечные элементы на более дешевых подложках; выращивать слои GaAs на удаляемых подложках или подложках многократного использования.

Кремний до сих пор остается основных материалом для производства фотоэлементов. Вообще кремний (Silicium, Silicon) — второй по распространенности элемент на Земле, запасы его огромны. Однако в промышленном его использовании есть одна большая проблема — его очистка. Процесс этот очень трудоемкий и затратный, поэтому чистый кремний стоит дорого. Сейчас ведется поиск аналогов, которые бы не уступали кремнию по КПД. Перспективными считаются соединения меди, индия, селена, галлия и кадмия, а также органические фотоэлементы.

На основе кремния производятся фотопанели трех видов:

1 Из монокристаллов. Для их изготовления выращиваются монокристаллы с однородной структурой. В результате такие фотоячейки отличаются равномерной поверхностью и, как следствие, лучше поглощают солнечные лучи. Иными словами, их КПД выше, чем у других видов, но при этом они стоят несколько дороже. Эти ячейки имеют вид квадратов со скошенными углами или многоугольников, что объясняется формой монокристаллической кремниевой заготовки.
2 Из поликристаллов. Такие ячейки имеют неоднородную, поликристаллическую, структуру. Их светопоглощение несколько ниже, чем у моноячеек, поскольку неравномерная поверхность отражает часть лучей.
3 На тонких пленках. Принцип работы таких солнечных батарей аналогичен кристаллическим. Но выпускаются они в виде гибких ячеек, которые можно устанавливать на криволинейных поверхностях. Эти батареи дешевы в производстве, и довольно эффективны, но для бытовых целей применяются редко, поскольку по сравнению с кристаллическими занимают большую площадь (примерно в 2,5раза) на единицу мощности.

Поликристаллические тонкие пленки также весьма перспективны для солнечной энергетики. Чрезвычайно высока способность к погло-щению солнечного излучения у диселенида меди и индия (CuInSe2) – 99 % света поглощается в первом микроне этого материала (ширина за-прещенной зоны – 1,0 эВ).

Среди солнечных элементов особое место занимают батареи, ис-пользующие органические материалы. Коэффициент полезного дейстия солнечных элементов на основе диоксида титана, покрытого органическим красителем, весьма высок – ~11 %.

Теллурид кадмия (CdTe) – еще один перспективный материал для фотовольтаики. У него почти идеальная ширина запрещенной зоны (1,44 эВ) и очень высокая способность к поглощению излучения. Плен-ки CdTe достаточно дешевы в изготовлении. Кроме того, технологиче-ски несложно получать разнообразные сплавы CdTe c Zn, Hg и другими элементами для создания слоев с заданными свойствами.

Самый первый в мире фотоэлемент появился в 1883 году в лаборатории Чарьза Фриттса. Он был изготовлен из селена, покрытого золотом. Увы, но такой набор материалов показал невысокие результаты — около1%КПД. Революция в использовании фотоэлементов произошла тогда, когда в недрах лаборатории компании «Bell Telephone» был создан первый элемент на кремнии.

Фотоэлемент на основе полупроводников состоит из алюминиевой подложки, двух слоев полупроводников с разной проводимостью, защитного антибликового стекла и отрицательных электродов (рисунок 2 ). К слоям с разных сторон подпаиваются контакты, которые используются для подключения к внешней цепи. Роль катода играет слой с n-проводимостью (электронная проводимость), роль анода — p-слой (дырочная проводимость).
Принцип действия фотоэлемента

Контакт p-или n-полупроводников приводит к образованию между ними контактного электрического поля, играющего важную роль в работе солнечного фотоэлемента.

Рассмотрим причину возникновения контактной разности потенциалов. При соединении в одном монокристалле полупроводников p- и n-типа возникает диффузионный поток электронов из полупроводника n-типа в полупроводник p-типа и, наоборот, поток дырок из p- в n-полупроводник. В результате такого процесса прилегающая к p-n переходу часть полупроводника p-типа будет заряжаться отрицательно, а прилегающая к p-n переходу часть полупроводника n-типа, наоборот, приобретет положительный заряд.

 

 

Рисунок 2 - Строение фотоэлемента

 

Таким образом, вблизи p-n перехода образуется двойной заряженный слой, который противодействует процессу диффузии электронов и дырок. Действительно, диффузия стремится создать поток электронов из n-области в p-область, а поле заряженного слоя, наоборот, – вернуть электроны в n-область.

Аналогичным образом поле в p-n переходе противодействует диффузии дырок из p- в n-область. В результате устанавливается равновесное состояние: в области p-n перехода возникает потенциальный барьер, для преодоления которого электроны из n-полупроводника и дырки из p-полупроводника должны затратить определенную энергию.

Рассмотрим работу p-n перехода в фотоэлементах. При поглощении света в полупроводнике возбуждаются электронно-дырочные пары. В однородном полупроводнике фотовозбуждение увеличивает только энергию электронов и дырок, не разделяя их в пространстве, то есть электроны и дырки разделяются «пространстве энергий», но остаются рядом в геометрическом пространстве.

Для разделения носителей тока и появления фотоэлектродвижущей силы (фотоЭДС) должна существовать дополнительная сила. Наиболее эффективное разделение неравновесных носителей имеет место именно в области p-n перехода. Генерированные вблизи p-n перехода «неосновные» носители (дырки в n-полупроводнике и электроны в p-полупроводнике) диффундируют к p-n переходу, подхватываются полем p-n перехода и выбрасываются в полупроводник, в котором они становятся основными носителями: электроны будут локализоваться в полупроводнике n-типа, а дырки – в полупроводнике p-типа.

В результате полупроводник p-типа получает избыточный положительный заряд, а полупроводник n-типа – отрицательный. Между n- и p-областями фотоэлемента возникает разность потенциалов – фотоЭДС, или напряжение в режиме холостого хода. Полярность фотоЭДС соответствует «прямому» смещению p-n перехода, которое понижает высоту потенциального барьера и способствует инжекции дырок из p-области в n-область и электронов из n-области в p-область. В результате действия этих двух противоположных механизмов – накопления носителей тока под действием света и их оттока из-за понижения высоты потенциального барьера – при разной интенсивности света устанавливается разная величина фотоЭДС. При этом величина фотоЭДС в широком диапазоне освещенностей растет пропорционально логарифму интенсивности свет, достигая насыщения при больших освещённостях.

При коротком замыкании освещенного p-n перехода в электрической цепи потечет ток, пропорциональный по величине интенсивности освещения и количеству генерированных светом электронно-дырочных пар. При включении в электрическую цепь полезной нагрузки, величина тока в цепи несколько уменьшится. Обычно электрическое сопротивление полезной нагрузки в цепи солнечного элемента выбирают таким, чтобы получить максимальную отдаваемую этой нагрузке электрическую мощность.








Дата добавления: 2015-10-09; просмотров: 1719;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.