Сосущая сила клетки. Избирательная способность цитоплазмы. Давление, с которым вода осмотически притекает в клетку, равно таким образом, разности между осмотическим давлением pи тургорным давлением P
Давление, с которым вода осмотически притекает в клетку, равно таким образом, разности между осмотическим давлением pи тургорным давлением P. Эту величину называют сосущей силой S: S = p – P. Вода поступает в клетку из внешнего раствора, если его потенциальное осмотическое давление меньше сосущей силы клетки и, наоборот, вода выходит из клетки в раствор с более высоким потенциальным осмотическим давлением. При термодинамической трактовке сосущая сила заменяется водным потенциалом yw. Водный потенциал можно определить как работу, необходимую для того, чтобы поднять потенциал связанной воды до потенциала чистой, то есть свободной воды. Термин водный потенциал не совсем точен. Правильнее, но менее употребителен термин разность потенциалов воды, поскольку он определяется разностью между химическими потенциалами воды в системе mw (например, вакуоле) и чистой воды mow при атмосферном давлении. Абсолютные значения mw и mow неизвестны, но их разность можно определить. Она всегда отрицательна. Потенциал воды в растворе, растении, почве и атмосфере меньше 0. Потенциал чистой воды равен 0.
Все неорганические питательные вещества поглощаются в форме ионов, содержащихся в водных растворах. Поглощение ионов клеткой начинается с их взаимодействия с клеточной стенкой. Ионы могут частично локализоваться в межмицеллярных и межфибриллярных промежутках клеточной стенки, частично связываться и фиксироваться в клеточной стенке электрическими зарядами.
Для того, чтобы проникнуть в цитоплазму и включиться в обмен веществ, ионы должны пройти через плазмалемму. Транспорт ионов через мембрану может быть пассивным и активным. Пассивное поглощение не требует затрат энергии и осуществляется путем диффузии по градиенту концентрации вещества, для которого плазмалемма проницаема. Электрический потенциал на мембране – трансмембранный потенциал может возникнуть по следующим причинам: 1) если поступление ионов идет по градиенту концентрации, но благодаря разной проницаемости мембраны с большей скоростью поступают катионы, чем анионы. В силу этого на мембране возникает разность электрических потенциалов, что приводит к диффузии противоположно заряженного иона; 2) при наличии на внутренней стороне мембраны белков, фиксирующих определенные ионы. За счет фиксированных зарядов создается дополнительная возможность поступления ионов противоположного заряда; 3) в результате активного транспорта либо катиона, либо аниона, в этом случае противоположно заряженный ион может передвигаться пассивно по градиенту электрического потенциала.
Активный транспорт – это транспорт, идущий против электрохимического градиента с затратой энергии, выделяющейся в процессе метаболизма. В определенных пределах с повышением температуры скорость активного поглощения веществ возрастает. В отсутствие кислорода, в атмосфере азота поступление ионов резко тормозится.
Активный транспорт ионов через мембрану осуществляется с помощью переносчиков. Ион реагирует со своим переносчиком на поверхности плазмалеммы. Комплекс переносчика с ионом подвижен в самой мембране и передвигается к ее внутренней стороне. Здесь комплекс распадается и ион освобождается во внутреннюю среду, а переносчик передвигается к внешней стороне мембраны. Подтверждением наличия переносчиков служит тот факт, что при увеличении концентрации солей в окружающем растворе скорость поступления солей сначала возрастает, а затем остается постоянной. Это объясняется ограниченным числом переносчиков. Переносчики специфичны, то есть участвуют в переносе только определенных ионов и, тем самым, обеспечивают избирательность поступления.
Пройдя через плазмалемму, ионы поступают в цитоплазму, где включаются в метаболизм клетки. Внутриклеточный транспорт ионов осуществляется благодаря движению цитоплазмы и по каналам эндоплазматического ретикулума. Ионы попадают в вакуоль, если цитоплазма и органеллы уже насыщены ими. Для того, чтобы попасть в вакуоль, ионы должны преодолеть еще один барьер – тонопласт. Транспорт ионов через тонопласт совершается также с помощью переносчиков и требует затраты энергии. Переносчики, расположенные в тонопласте, имеют меньшее сродство к ионам и действуют при более высоких концентрациях ионов по сравнению с переносчиками плазмалеммы.
Дата добавления: 2015-10-09; просмотров: 1481;