Дії з матрицями
Означення 8. Сумою матриць одного й того самого порядку і називається матриця ; , будь-який елемент якої дорівнює сумі відповідних елементів матриць А і В: . Наприклад обидві матриці , мають розмір , тому за означенням можна утворити їх суму — матрицю
.
Означення 9. Добутком матриці на деяке число називається така матриця С, кожен елемент якої утворюється множенням відповідних елементів матриці А на , .
Приклад. , .
Очевидно, що для суми матриць і добутку матриць на число виконуються рівності:
1) ;
2) ;
3) ;
4) ,
5) .
Означення 10. Добутком матриці розміру на матрицю розміру називається така матриця розміру , , кожний елемент можна знайти за формулою:
.
Кожний елемент матриці С утворюється як сума добутків відповідних елементів і-го рядка матриці А на відповідні елементи j-го стовпця матриці В, тобто за схемою:
Зазначимо, що в результаті множення дістанемо матрицю розміру .
З означення випливає, що добуток матриць некомутативний: .
Повернемось до системи рівнянь (1.1) і утворимо матриці: А — коефіцієнтів при невідомих, Х — невідомих, В — вільних членів:
, , .
Тоді згідно з означенням добутку матриць систему рівнянь (1.1) можна записати в матричному вигляді:
, (1.5)
який значно скорочує запис системи рівнянь.
3. Обернена матриця
Означення 11. Матриця А–1 називається оберненою матрицею до квадратної невиродженої матриці А, якщо виконується співвідношення: .
Нехай дано квадратну матрицю А. Доведемо, що коли , існує обернена матриця А–1. Розглянемо матрицю:
. Утворимо добутки і .
За правилом множення матриць елементи матриці С знаходимо за формулою:
. (1.6)
Якщо i = j, то згідно з формулою (1.3) маємо: , тобто знаходимо значення визначника матриці А; якщо то вираз (1.6) є сумою добутків елементів i-го рядка визначника на алгебраїчні доповнення, що відповідають j-му рядку цього самого визначника. За властивістю 9 визначників така алгебраїчна сума дорівнює нулю. Отже, якщо i ¹ j. Матриця С набирає вигляду: . Щоб ця матриця стала одиничною, треба помножити її на .
.
Отже, обернена матриця має вигляд:
.
Доведемо, що для матриці А матриця А–1 єдина. Для цього припустимо протилежне. Нехай існує одна матриця С, така що АС = СА = Е. Тоді
САА–1 = С(АА–1) = СЕ = С,
а водночас
САА–1 = (СА)А–1 = ЕА–1 = А–1, звідси С = А–1.
Доходимо висновку, що початкове припущення неправильне, тобто обернена матриця єдина.
4. Ранг матриці
Розглянемо матрицю А розміром
і введемо ще одне важливе поняття.
Означення 12. Рангом матриці А розміром називається найвищий порядок відмінного від нуля мінора, утвореного з елементів цієї матриці. Зрозуміло, що , а найбільший можливий ранг матриці може дорівнювати меншому з чисел m і n.
Розглянемо також поняття обвідного мінора k-го порядку. Це буде такий мінор -го порядку, який повністю містить у собі мінор k-го порядку.
Обчислюючи ранг матриці, потрібно переходити від мінорів менших порядків, відмінних від нуля, до мінорів більших порядків. Якщо вже знайдено відмінний від нуля мінор М k-го порядку, то достатньо обчислити лише мінори -го порядку, що обводять мінор М. Якщо всі вони дорівнюють нулю, то ранг матриці дорівнює k. Якщо серед них знайдеться такий, що відмінний від нуля, то далі для нього будуються обвідні мінори -го порядку і т. д.
Означення 13. Елементарними перетвореннями матриці А називаються такі її перетворення:
1) заміна місцями двох рядків або двох стовпців матриці;
2) множення рядка або стовпця матриці на довільне відмінне від нуля число;
3) додавання елементів одного рядка або стовпця до відповідних елементів іншого рядка або стовпця, попередньо помноженого на деяке число.
Дата добавления: 2015-10-05; просмотров: 1216;